跨同位素原子-原子反应的机器学习模型

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy
Daniel Julian, Rian Koots, Jesús Pérez-Ríos
{"title":"跨同位素原子-原子反应的机器学习模型","authors":"Daniel Julian, Rian Koots, Jesús Pérez-Ríos","doi":"10.1103/physreva.110.032811","DOIUrl":null,"url":null,"abstract":"This work shows that feed-forward neural networks can predict the final rovibrational state distributions of inelastic and reactive processes of the reaction of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ca</mi><mo>+</mo><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub><mo>→</mo><mi>CaH</mi><mo>+</mo><mi mathvariant=\"normal\">H</mi></mrow></math> in the hyperthermal regime, relevant for buffer gas chemistry. Furthermore, these models can be extended to the isotopologues of the reaction involving deuterium and tritium. In addition, we develop a neural network model that can learn across the chemical space based on the isotopologues of hydrogen. The model can predict the outcome of a reaction whose reactants have never been seen. This is done by training on the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ca</mi><mo>+</mo><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ca</mi><mo>+</mo><msub><mi mathvariant=\"normal\">T</mi><mn>2</mn></msub></mrow></math> reactions and subsequently predicting the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ca</mi><mo>+</mo><msub><mi mathvariant=\"normal\">D</mi><mn>2</mn></msub></mrow></math> reaction.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"25 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-learning models for atom-diatom reactions across isotopologues\",\"authors\":\"Daniel Julian, Rian Koots, Jesús Pérez-Ríos\",\"doi\":\"10.1103/physreva.110.032811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work shows that feed-forward neural networks can predict the final rovibrational state distributions of inelastic and reactive processes of the reaction of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Ca</mi><mo>+</mo><msub><mi mathvariant=\\\"normal\\\">H</mi><mn>2</mn></msub><mo>→</mo><mi>CaH</mi><mo>+</mo><mi mathvariant=\\\"normal\\\">H</mi></mrow></math> in the hyperthermal regime, relevant for buffer gas chemistry. Furthermore, these models can be extended to the isotopologues of the reaction involving deuterium and tritium. In addition, we develop a neural network model that can learn across the chemical space based on the isotopologues of hydrogen. The model can predict the outcome of a reaction whose reactants have never been seen. This is done by training on the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Ca</mi><mo>+</mo><msub><mi mathvariant=\\\"normal\\\">H</mi><mn>2</mn></msub></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Ca</mi><mo>+</mo><msub><mi mathvariant=\\\"normal\\\">T</mi><mn>2</mn></msub></mrow></math> reactions and subsequently predicting the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Ca</mi><mo>+</mo><msub><mi mathvariant=\\\"normal\\\">D</mi><mn>2</mn></msub></mrow></math> reaction.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.032811\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.032811","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

这项研究表明,前馈神经网络可以预测超热状态下 Ca+H2→CaH+H 反应的非弹性和反应过程的最终振荡状态分布,这与缓冲气体化学有关。此外,这些模型还可扩展到涉及氘和氚反应的同位素。此外,我们还开发了一种神经网络模型,可以根据氢的同位素在化学空间中进行学习。该模型可以预测反应物从未见过的反应结果。具体方法是对 Ca+H2 和 Ca+T2 反应进行训练,然后预测 Ca+D2 反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine-learning models for atom-diatom reactions across isotopologues

Machine-learning models for atom-diatom reactions across isotopologues
This work shows that feed-forward neural networks can predict the final rovibrational state distributions of inelastic and reactive processes of the reaction of Ca+H2CaH+H in the hyperthermal regime, relevant for buffer gas chemistry. Furthermore, these models can be extended to the isotopologues of the reaction involving deuterium and tritium. In addition, we develop a neural network model that can learn across the chemical space based on the isotopologues of hydrogen. The model can predict the outcome of a reaction whose reactants have never been seen. This is done by training on the Ca+H2 and Ca+T2 reactions and subsequently predicting the Ca+D2 reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信