量子热机的噪声诱导相干各向异性

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy
Manash Jyoti Sarmah, Himangshu Prabal Goswami
{"title":"量子热机的噪声诱导相干各向异性","authors":"Manash Jyoti Sarmah, Himangshu Prabal Goswami","doi":"10.1103/physreva.110.032213","DOIUrl":null,"url":null,"abstract":"We theoretically identify the noise-induced coherent contribution to the ergotropy of a four-level quantum heat engine coupled to a unimodal quantum cavity. We utilize a protocol where the passive state's quasiprobabilities can be analytically identified from the population-coherence coupled reduced density matrix. The reduced density matrix elements are evaluated using a microscopic quantum master equation formalism. Multiple ergotropies within the same coherence interval, each characterized by a positive and pronounced coherent contribution, are observed. These ergotropies are a result of population inversion as well as quasiprobability-population inversion, controllable through the coherence measure parameters. The optimal flux and power of the engine are found to be at moderate values of ergotropy with increasing values of noise-induced coherence. The optimal power at different coherences is found to possess a constant ergotropy.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"30 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise-induced coherent ergotropy of a quantum heat engine\",\"authors\":\"Manash Jyoti Sarmah, Himangshu Prabal Goswami\",\"doi\":\"10.1103/physreva.110.032213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We theoretically identify the noise-induced coherent contribution to the ergotropy of a four-level quantum heat engine coupled to a unimodal quantum cavity. We utilize a protocol where the passive state's quasiprobabilities can be analytically identified from the population-coherence coupled reduced density matrix. The reduced density matrix elements are evaluated using a microscopic quantum master equation formalism. Multiple ergotropies within the same coherence interval, each characterized by a positive and pronounced coherent contribution, are observed. These ergotropies are a result of population inversion as well as quasiprobability-population inversion, controllable through the coherence measure parameters. The optimal flux and power of the engine are found to be at moderate values of ergotropy with increasing values of noise-induced coherence. The optimal power at different coherences is found to possess a constant ergotropy.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.032213\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.032213","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们从理论上确定了与单模态量子腔耦合的四级量子热机的各向异性的噪声诱导相干贡献。我们利用一种协议,从种群-相干耦合还原密度矩阵中分析确定被动态的准概率。还原密度矩阵元素通过微观量子主方程形式进行评估。在同一相干区间内观察到多个各向异性,每个各向异性的特征都是正的和明显的相干贡献。这些各向异性是种群反转和准概率-种群反转的结果,可通过相干测量参数进行控制。随着噪声引起的相干性值的增加,发现引擎的最佳通量和功率处于中等各向异性值。不同相干性下的最佳功率具有恒定的各向异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Noise-induced coherent ergotropy of a quantum heat engine

Noise-induced coherent ergotropy of a quantum heat engine
We theoretically identify the noise-induced coherent contribution to the ergotropy of a four-level quantum heat engine coupled to a unimodal quantum cavity. We utilize a protocol where the passive state's quasiprobabilities can be analytically identified from the population-coherence coupled reduced density matrix. The reduced density matrix elements are evaluated using a microscopic quantum master equation formalism. Multiple ergotropies within the same coherence interval, each characterized by a positive and pronounced coherent contribution, are observed. These ergotropies are a result of population inversion as well as quasiprobability-population inversion, controllable through the coherence measure parameters. The optimal flux and power of the engine are found to be at moderate values of ergotropy with increasing values of noise-induced coherence. The optimal power at different coherences is found to possess a constant ergotropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信