Yuehai Tu, Feng Tu, Yun Yang, Jiaqi Qian, Xi Wu, Sian Yang
{"title":"利用双自注意网络-N-BEATS 模型优化变电站直流系统中的电池充放电策略","authors":"Yuehai Tu, Feng Tu, Yun Yang, Jiaqi Qian, Xi Wu, Sian Yang","doi":"10.1177/00368504241274999","DOIUrl":null,"url":null,"abstract":"With the rapid pace of urbanization and industrialization, the demand for electricity has surged, placing immense pressure on power management systems. Substation DC systems play a crucial role in managing these fluctuations to ensure a stable and reliable power supply. However, existing battery charging and discharging strategies often suffer from inefficiencies, which can negatively impact overall system performance and sustainability. In this study, we introduce a novel approach that leverages artificial intelligence and time series predictive analytics through the dual self-attention network-neural basis expansion analysis for time series (DSAN-N-BEATS) model. This model integrates the self-attention network with the neural basis expansion analysis for time series (N-BEATS) model to accurately capture time-series data and optimize battery management. Our experimental results demonstrate that the DSAN-N-BEATS model significantly enhances battery state prediction accuracy, achieving a 95.84% accuracy rate, and improves charging and discharging efficiency by 20% compared to traditional methods. These improvements contribute to the overall reliability and sustainability of power systems. This research provides innovative methods for optimizing battery strategies, supporting sustainable development in the power industry, and enhancing system stability and reliability.","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"2 1","pages":"368504241274999"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of battery charging and discharging strategies in substation DC systems using the dual self-attention network-N-BEATS model\",\"authors\":\"Yuehai Tu, Feng Tu, Yun Yang, Jiaqi Qian, Xi Wu, Sian Yang\",\"doi\":\"10.1177/00368504241274999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid pace of urbanization and industrialization, the demand for electricity has surged, placing immense pressure on power management systems. Substation DC systems play a crucial role in managing these fluctuations to ensure a stable and reliable power supply. However, existing battery charging and discharging strategies often suffer from inefficiencies, which can negatively impact overall system performance and sustainability. In this study, we introduce a novel approach that leverages artificial intelligence and time series predictive analytics through the dual self-attention network-neural basis expansion analysis for time series (DSAN-N-BEATS) model. This model integrates the self-attention network with the neural basis expansion analysis for time series (N-BEATS) model to accurately capture time-series data and optimize battery management. Our experimental results demonstrate that the DSAN-N-BEATS model significantly enhances battery state prediction accuracy, achieving a 95.84% accuracy rate, and improves charging and discharging efficiency by 20% compared to traditional methods. These improvements contribute to the overall reliability and sustainability of power systems. This research provides innovative methods for optimizing battery strategies, supporting sustainable development in the power industry, and enhancing system stability and reliability.\",\"PeriodicalId\":56061,\"journal\":{\"name\":\"Science Progress\",\"volume\":\"2 1\",\"pages\":\"368504241274999\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Progress\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1177/00368504241274999\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241274999","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Optimization of battery charging and discharging strategies in substation DC systems using the dual self-attention network-N-BEATS model
With the rapid pace of urbanization and industrialization, the demand for electricity has surged, placing immense pressure on power management systems. Substation DC systems play a crucial role in managing these fluctuations to ensure a stable and reliable power supply. However, existing battery charging and discharging strategies often suffer from inefficiencies, which can negatively impact overall system performance and sustainability. In this study, we introduce a novel approach that leverages artificial intelligence and time series predictive analytics through the dual self-attention network-neural basis expansion analysis for time series (DSAN-N-BEATS) model. This model integrates the self-attention network with the neural basis expansion analysis for time series (N-BEATS) model to accurately capture time-series data and optimize battery management. Our experimental results demonstrate that the DSAN-N-BEATS model significantly enhances battery state prediction accuracy, achieving a 95.84% accuracy rate, and improves charging and discharging efficiency by 20% compared to traditional methods. These improvements contribute to the overall reliability and sustainability of power systems. This research provides innovative methods for optimizing battery strategies, supporting sustainable development in the power industry, and enhancing system stability and reliability.
期刊介绍:
Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.