Hongning Zhang, Tianni Lu, Qianxi Zhang, Zhenwei Huang, Na Li, Jinman Zhang, Chunzhong Liu
{"title":"SmFeN 含量对三明治结构 YSZ/SmFeN/YSZ 复合材料电磁波吸收特性的影响","authors":"Hongning Zhang, Tianni Lu, Qianxi Zhang, Zhenwei Huang, Na Li, Jinman Zhang, Chunzhong Liu","doi":"10.1016/j.ceramint.2024.09.246","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the thermal barrier material Yttria Stabilized Zirconia (YSZ) and the electromagnetic wave (EMW) absorbing agent samarium iron nitrogen (SmFeN) were used to prepare a YSZ/SmFeN/YSZ sandwich-structured composite. The YSZ/SmFeN interface was prepared perpendicular to the directions of EMWs. The EMW attenuation of the composites with different SmFeN contents and their mechanisms were studied using electromagnetic parameters, impedance matching, Cole–Cole circles, and minimum reflection loss (<em>RL</em><sub><em>min</em></sub> value). Dielectric loss was the dominant mechanism behind EMW attenuation for the composites. In addition, the dipole orientation of SmFeN and the presence of phase interface induced the dielectric loss. The mechanism of dipole orientation polarization was influenced by SmFeN content; the lesser the SmFeN content in the composite, the higher the <em>ε</em> <span><math><mrow><mo>′</mo></mrow></math></span> (real part of dielectric coefficient). The frequency at which ε <span><math><mrow><mo>′</mo></mrow></math></span> peaked shifted decreased with increasing SmFeN content. Higher dielectric losses were observed in the frequency band of 4.0–8.0 GHz. The EMW absorption rate showed that the optimum EMW absorption effect was achieved when the thickness ratio of YSZ:SmFeN:YSZ was 1:4:1 and the thickness is 3.325 mm. The corresponding <em>RL</em><sub><em>min</em></sub> was −35.3 dB and effective absorption bandwidth was 9.5 GHz (8.3–17.9 GHz).</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49051-49057"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the SmFeN content on the electromagnetic wave absorbing properties of sandwich-structured YSZ/SmFeN/YSZ composites\",\"authors\":\"Hongning Zhang, Tianni Lu, Qianxi Zhang, Zhenwei Huang, Na Li, Jinman Zhang, Chunzhong Liu\",\"doi\":\"10.1016/j.ceramint.2024.09.246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the thermal barrier material Yttria Stabilized Zirconia (YSZ) and the electromagnetic wave (EMW) absorbing agent samarium iron nitrogen (SmFeN) were used to prepare a YSZ/SmFeN/YSZ sandwich-structured composite. The YSZ/SmFeN interface was prepared perpendicular to the directions of EMWs. The EMW attenuation of the composites with different SmFeN contents and their mechanisms were studied using electromagnetic parameters, impedance matching, Cole–Cole circles, and minimum reflection loss (<em>RL</em><sub><em>min</em></sub> value). Dielectric loss was the dominant mechanism behind EMW attenuation for the composites. In addition, the dipole orientation of SmFeN and the presence of phase interface induced the dielectric loss. The mechanism of dipole orientation polarization was influenced by SmFeN content; the lesser the SmFeN content in the composite, the higher the <em>ε</em> <span><math><mrow><mo>′</mo></mrow></math></span> (real part of dielectric coefficient). The frequency at which ε <span><math><mrow><mo>′</mo></mrow></math></span> peaked shifted decreased with increasing SmFeN content. Higher dielectric losses were observed in the frequency band of 4.0–8.0 GHz. The EMW absorption rate showed that the optimum EMW absorption effect was achieved when the thickness ratio of YSZ:SmFeN:YSZ was 1:4:1 and the thickness is 3.325 mm. The corresponding <em>RL</em><sub><em>min</em></sub> was −35.3 dB and effective absorption bandwidth was 9.5 GHz (8.3–17.9 GHz).</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"50 23\",\"pages\":\"Pages 49051-49057\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224042548\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224042548","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Effects of the SmFeN content on the electromagnetic wave absorbing properties of sandwich-structured YSZ/SmFeN/YSZ composites
In this study, the thermal barrier material Yttria Stabilized Zirconia (YSZ) and the electromagnetic wave (EMW) absorbing agent samarium iron nitrogen (SmFeN) were used to prepare a YSZ/SmFeN/YSZ sandwich-structured composite. The YSZ/SmFeN interface was prepared perpendicular to the directions of EMWs. The EMW attenuation of the composites with different SmFeN contents and their mechanisms were studied using electromagnetic parameters, impedance matching, Cole–Cole circles, and minimum reflection loss (RLmin value). Dielectric loss was the dominant mechanism behind EMW attenuation for the composites. In addition, the dipole orientation of SmFeN and the presence of phase interface induced the dielectric loss. The mechanism of dipole orientation polarization was influenced by SmFeN content; the lesser the SmFeN content in the composite, the higher the ε (real part of dielectric coefficient). The frequency at which ε peaked shifted decreased with increasing SmFeN content. Higher dielectric losses were observed in the frequency band of 4.0–8.0 GHz. The EMW absorption rate showed that the optimum EMW absorption effect was achieved when the thickness ratio of YSZ:SmFeN:YSZ was 1:4:1 and the thickness is 3.325 mm. The corresponding RLmin was −35.3 dB and effective absorption bandwidth was 9.5 GHz (8.3–17.9 GHz).
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.