连续和离散时移可积分方程的反散射变换

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Mark J. Ablowitz, Ziad H. Musslimani, Nicholas J. Ossi
{"title":"连续和离散时移可积分方程的反散射变换","authors":"Mark J. Ablowitz,&nbsp;Ziad H. Musslimani,&nbsp;Nicholas J. Ossi","doi":"10.1111/sapm.12764","DOIUrl":null,"url":null,"abstract":"<p>Nonlocal integrable partial differential equations possessing a spatial or temporal reflection have constituted an active research area for the past decade. Recently, more general classes of these nonlocal equations have been proposed, wherein the nonlocality appears as a combination of a shift (by a real or a complex parameter) and a reflection. This new shifting parameter manifests itself in the inverse scattering transform (IST) as an additional phase factor in an analogous way to the classical Fourier transform. In this paper, the IST is analyzed in detail for several examples of such systems. Particularly, time, space, and space-time-shifted nonlinear Schrödinger (NLS) and space-time-shifted modified Korteweg-de Vries equations are studied. Additionally, the semidiscrete IST is developed for the time, space, and space-time-shifted variants of the Ablowitz–Ladik integrable discretization of the NLS. One-soliton solutions are constructed for all continuous and discrete cases.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse scattering transform for continuous and discrete space-time-shifted integrable equations\",\"authors\":\"Mark J. Ablowitz,&nbsp;Ziad H. Musslimani,&nbsp;Nicholas J. Ossi\",\"doi\":\"10.1111/sapm.12764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonlocal integrable partial differential equations possessing a spatial or temporal reflection have constituted an active research area for the past decade. Recently, more general classes of these nonlocal equations have been proposed, wherein the nonlocality appears as a combination of a shift (by a real or a complex parameter) and a reflection. This new shifting parameter manifests itself in the inverse scattering transform (IST) as an additional phase factor in an analogous way to the classical Fourier transform. In this paper, the IST is analyzed in detail for several examples of such systems. Particularly, time, space, and space-time-shifted nonlinear Schrödinger (NLS) and space-time-shifted modified Korteweg-de Vries equations are studied. Additionally, the semidiscrete IST is developed for the time, space, and space-time-shifted variants of the Ablowitz–Ladik integrable discretization of the NLS. One-soliton solutions are constructed for all continuous and discrete cases.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12764\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12764","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

过去十年来,具有空间或时间反射的非局部可积分偏微分方程一直是一个活跃的研究领域。最近,有人提出了这些非局部方程的更一般类别,其中的非局部性表现为移动(通过实数或复数参数)和反射的组合。这种新的移动参数在反向散射变换(IST)中表现为一个额外的相位因子,与经典的傅立叶变换类似。本文针对此类系统的几个实例详细分析了 IST。特别是研究了时间、空间和时空偏移非线性薛定谔方程(NLS)以及时空偏移修正 Korteweg-de Vries 方程。此外,还针对 NLS 的 Ablowitz-Ladik 可积分离散化的时间、空间和时空偏移变体,开发了半离散 IST。构建了所有连续和离散情况下的单孑子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse scattering transform for continuous and discrete space-time-shifted integrable equations

Nonlocal integrable partial differential equations possessing a spatial or temporal reflection have constituted an active research area for the past decade. Recently, more general classes of these nonlocal equations have been proposed, wherein the nonlocality appears as a combination of a shift (by a real or a complex parameter) and a reflection. This new shifting parameter manifests itself in the inverse scattering transform (IST) as an additional phase factor in an analogous way to the classical Fourier transform. In this paper, the IST is analyzed in detail for several examples of such systems. Particularly, time, space, and space-time-shifted nonlinear Schrödinger (NLS) and space-time-shifted modified Korteweg-de Vries equations are studied. Additionally, the semidiscrete IST is developed for the time, space, and space-time-shifted variants of the Ablowitz–Ladik integrable discretization of the NLS. One-soliton solutions are constructed for all continuous and discrete cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信