Abdul Baqi, Samiullah, Ghulam Mustafa Khan, Asadullah, Naqeebullah Khan, Attiq-Ur-Rehman, Alia Ahmed
{"title":"玉米植株中功能性 microRNA 及其重要靶标的鉴定和表征","authors":"Abdul Baqi, Samiullah, Ghulam Mustafa Khan, Asadullah, Naqeebullah Khan, Attiq-Ur-Rehman, Alia Ahmed","doi":"10.1007/s13562-024-00918-9","DOIUrl":null,"url":null,"abstract":"<p>Various metabolic and cell signaling processes influence the function of maize plant cells. miRNAs play numerous regulatory roles in regulating yield and protecting against various stressors. This study aims to identify and partially characterize some novel miRNAs in maize using in silico tools and provide a preliminary evaluation of their role. In this research, 20 novel conserved maize miRNAs belonging to 20 miRNA families were predicted using in silico tools and validated through RT-PCR. Consequently, 5850 different protein targets of these newly predicted miRNAs were identified via the psRNA Target approach. These targets included 20 significant ones involved in regulating metabolism, structural proteins, cell signaling proteins, and transportation factors. Moreover, the miRNA zma-miR5068 was predicted to be involved in the ubiquitin fusion protein process. Overall, this study examines novel maize miRNAs targeting several significant genes that could help manage the environment for better maize tolerance.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of functional microRNAs and their significant targets in maize plants\",\"authors\":\"Abdul Baqi, Samiullah, Ghulam Mustafa Khan, Asadullah, Naqeebullah Khan, Attiq-Ur-Rehman, Alia Ahmed\",\"doi\":\"10.1007/s13562-024-00918-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Various metabolic and cell signaling processes influence the function of maize plant cells. miRNAs play numerous regulatory roles in regulating yield and protecting against various stressors. This study aims to identify and partially characterize some novel miRNAs in maize using in silico tools and provide a preliminary evaluation of their role. In this research, 20 novel conserved maize miRNAs belonging to 20 miRNA families were predicted using in silico tools and validated through RT-PCR. Consequently, 5850 different protein targets of these newly predicted miRNAs were identified via the psRNA Target approach. These targets included 20 significant ones involved in regulating metabolism, structural proteins, cell signaling proteins, and transportation factors. Moreover, the miRNA zma-miR5068 was predicted to be involved in the ubiquitin fusion protein process. Overall, this study examines novel maize miRNAs targeting several significant genes that could help manage the environment for better maize tolerance.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00918-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00918-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification and characterization of functional microRNAs and their significant targets in maize plants
Various metabolic and cell signaling processes influence the function of maize plant cells. miRNAs play numerous regulatory roles in regulating yield and protecting against various stressors. This study aims to identify and partially characterize some novel miRNAs in maize using in silico tools and provide a preliminary evaluation of their role. In this research, 20 novel conserved maize miRNAs belonging to 20 miRNA families were predicted using in silico tools and validated through RT-PCR. Consequently, 5850 different protein targets of these newly predicted miRNAs were identified via the psRNA Target approach. These targets included 20 significant ones involved in regulating metabolism, structural proteins, cell signaling proteins, and transportation factors. Moreover, the miRNA zma-miR5068 was predicted to be involved in the ubiquitin fusion protein process. Overall, this study examines novel maize miRNAs targeting several significant genes that could help manage the environment for better maize tolerance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.