Deevita Srivastava, Asim K Ghosh, Aashish Ranjan, Senjuti Sinharoy
{"title":"对鹰嘴豆高效固氮微共生体 Mesorhizobium Spp.鹰嘴豆的高效固氮微共生体 NI-7 有可能揭示豆科植物共生固氮的分子机制","authors":"Deevita Srivastava, Asim K Ghosh, Aashish Ranjan, Senjuti Sinharoy","doi":"10.1007/s13562-024-00917-w","DOIUrl":null,"url":null,"abstract":"<p>Root nodule symbiosis is a major pillar of sustainable agriculture. The newly formed symbiotic organ in the legume root harbours rhizobacteria, which can fix atmospheric nitrogen into a bioavailable and reduced form, ammonia. Previously, we reported the isolation of an efficient <i>Mesorhizobium spp.</i> NI-7, from the interior of chickpea nodules. Here, we report the draft genome sequence of the <i>Mesorhizobium spp.</i> NI-7 and the comparative genomics among different Mesorhizobium strains that have adopted symbiosis during chickpea domestication. The draft genome of <i>Mesorhizobium spp.</i> NI-7 consists of a single 4.28 Mbp chromosome and a 359 Kbp plasmid. The 16 S rDNA sequence based phylogenetic analysis highlighted that <i>Mesorhizobium spp.</i> NI-7 belongs to a diverse Mesorhizobium clade that evolved during the domestication of chickpea. Comparative genomics among several Mesorhizobium strains identified 2193 common orthologous groups and several unique orthologous groups among the different Mesorhizobium pairs. The draft genome contains the essential nitrogen fixation genes along with the genes required for the nutrient exchange from the plant to the symbiont. Additionally, part of the symbiotic NOD-factor operon and Type III secretion system were also detected in the <i>Mesorhizobium spp.</i> NI-7 draft genome. The comparative genomics among the Mesorhizobium strains identified a subset of rhizobial genes that would have evolved during chickpea-Mesorhizobium adaptation to the Indian sub-continent. These genes are unique targets that can be validated in the future to understand the chickpea and Mesorhizobium adaptation. In summary, the draft genome sequencing of <i>Mesorhizobium spp.</i> NI-7 will equip the plant-microbe community with a chickpea-compatible Mesorhizobium strain isolated from India, suitable for both fundamental and advanced research on nodulation in chickpea, as well as for promoting sustainable agriculture in a comprehensive manner.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome sequencing of Mesorhizobium Spp. NI-7, an efficient nitrogen-fixing microsymbiont of chickpea with potential to unravel the molecular mechanisms of symbiotic nitrogen fixation in legumes\",\"authors\":\"Deevita Srivastava, Asim K Ghosh, Aashish Ranjan, Senjuti Sinharoy\",\"doi\":\"10.1007/s13562-024-00917-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Root nodule symbiosis is a major pillar of sustainable agriculture. The newly formed symbiotic organ in the legume root harbours rhizobacteria, which can fix atmospheric nitrogen into a bioavailable and reduced form, ammonia. Previously, we reported the isolation of an efficient <i>Mesorhizobium spp.</i> NI-7, from the interior of chickpea nodules. Here, we report the draft genome sequence of the <i>Mesorhizobium spp.</i> NI-7 and the comparative genomics among different Mesorhizobium strains that have adopted symbiosis during chickpea domestication. The draft genome of <i>Mesorhizobium spp.</i> NI-7 consists of a single 4.28 Mbp chromosome and a 359 Kbp plasmid. The 16 S rDNA sequence based phylogenetic analysis highlighted that <i>Mesorhizobium spp.</i> NI-7 belongs to a diverse Mesorhizobium clade that evolved during the domestication of chickpea. Comparative genomics among several Mesorhizobium strains identified 2193 common orthologous groups and several unique orthologous groups among the different Mesorhizobium pairs. The draft genome contains the essential nitrogen fixation genes along with the genes required for the nutrient exchange from the plant to the symbiont. Additionally, part of the symbiotic NOD-factor operon and Type III secretion system were also detected in the <i>Mesorhizobium spp.</i> NI-7 draft genome. The comparative genomics among the Mesorhizobium strains identified a subset of rhizobial genes that would have evolved during chickpea-Mesorhizobium adaptation to the Indian sub-continent. These genes are unique targets that can be validated in the future to understand the chickpea and Mesorhizobium adaptation. In summary, the draft genome sequencing of <i>Mesorhizobium spp.</i> NI-7 will equip the plant-microbe community with a chickpea-compatible Mesorhizobium strain isolated from India, suitable for both fundamental and advanced research on nodulation in chickpea, as well as for promoting sustainable agriculture in a comprehensive manner.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00917-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00917-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Genome sequencing of Mesorhizobium Spp. NI-7, an efficient nitrogen-fixing microsymbiont of chickpea with potential to unravel the molecular mechanisms of symbiotic nitrogen fixation in legumes
Root nodule symbiosis is a major pillar of sustainable agriculture. The newly formed symbiotic organ in the legume root harbours rhizobacteria, which can fix atmospheric nitrogen into a bioavailable and reduced form, ammonia. Previously, we reported the isolation of an efficient Mesorhizobium spp. NI-7, from the interior of chickpea nodules. Here, we report the draft genome sequence of the Mesorhizobium spp. NI-7 and the comparative genomics among different Mesorhizobium strains that have adopted symbiosis during chickpea domestication. The draft genome of Mesorhizobium spp. NI-7 consists of a single 4.28 Mbp chromosome and a 359 Kbp plasmid. The 16 S rDNA sequence based phylogenetic analysis highlighted that Mesorhizobium spp. NI-7 belongs to a diverse Mesorhizobium clade that evolved during the domestication of chickpea. Comparative genomics among several Mesorhizobium strains identified 2193 common orthologous groups and several unique orthologous groups among the different Mesorhizobium pairs. The draft genome contains the essential nitrogen fixation genes along with the genes required for the nutrient exchange from the plant to the symbiont. Additionally, part of the symbiotic NOD-factor operon and Type III secretion system were also detected in the Mesorhizobium spp. NI-7 draft genome. The comparative genomics among the Mesorhizobium strains identified a subset of rhizobial genes that would have evolved during chickpea-Mesorhizobium adaptation to the Indian sub-continent. These genes are unique targets that can be validated in the future to understand the chickpea and Mesorhizobium adaptation. In summary, the draft genome sequencing of Mesorhizobium spp. NI-7 will equip the plant-microbe community with a chickpea-compatible Mesorhizobium strain isolated from India, suitable for both fundamental and advanced research on nodulation in chickpea, as well as for promoting sustainable agriculture in a comprehensive manner.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.