带子代的热带精细曲线计数法

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Patrick Kennedy-Hunt, Qaasim Shafi, Ajith Urundolil Kumaran
{"title":"带子代的热带精细曲线计数法","authors":"Patrick Kennedy-Hunt,&nbsp;Qaasim Shafi,&nbsp;Ajith Urundolil Kumaran","doi":"10.1007/s00220-024-05114-3","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a <i>q</i>-refined tropical correspondence theorem for higher genus descendant logarithmic Gromov–Witten invariants with a <span>\\(\\lambda _g\\)</span> class in toric surfaces. Specifically, a generating series of such logarithmic Gromov–Witten invariants agrees with a <i>q</i>-refined count of rational tropical curves satisfying higher valency conditions. As a corollary, we obtain a geometric proof of the deformation invariance of this tropical count. In particular, our results give an algebro-geometric meaning to the tropical count defined by Blechman and Shustin. Our strategy is to use the logarithmic degeneration formula, and the key new technique is to reduce to computing integrals against double ramification cycles and connect these integrals to the non-commutative KdV hierarchy.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05114-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Tropical Refined Curve Counting with Descendants\",\"authors\":\"Patrick Kennedy-Hunt,&nbsp;Qaasim Shafi,&nbsp;Ajith Urundolil Kumaran\",\"doi\":\"10.1007/s00220-024-05114-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a <i>q</i>-refined tropical correspondence theorem for higher genus descendant logarithmic Gromov–Witten invariants with a <span>\\\\(\\\\lambda _g\\\\)</span> class in toric surfaces. Specifically, a generating series of such logarithmic Gromov–Witten invariants agrees with a <i>q</i>-refined count of rational tropical curves satisfying higher valency conditions. As a corollary, we obtain a geometric proof of the deformation invariance of this tropical count. In particular, our results give an algebro-geometric meaning to the tropical count defined by Blechman and Shustin. Our strategy is to use the logarithmic degeneration formula, and the key new technique is to reduce to computing integrals against double ramification cycles and connect these integrals to the non-commutative KdV hierarchy.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05114-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05114-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05114-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在环面中具有(\lambda _g\)类的高属后裔对数格罗莫夫-维滕不变式的q-精简热带对应定理。具体地说,这种对数格罗莫夫-维滕不变式的产生数列与满足高价条件的有理热带曲线的 q-refined 计数一致。作为一个推论,我们得到了这个热带计数的变形不变性的几何证明。特别是,我们的结果赋予了布莱希曼和舒斯廷定义的热带计数以几何学意义。我们的策略是使用对数退化公式,而关键的新技术是简化为计算针对双斜面循环的积分,并将这些积分与非交换 KdV 层次联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tropical Refined Curve Counting with Descendants

Tropical Refined Curve Counting with Descendants

We prove a q-refined tropical correspondence theorem for higher genus descendant logarithmic Gromov–Witten invariants with a \(\lambda _g\) class in toric surfaces. Specifically, a generating series of such logarithmic Gromov–Witten invariants agrees with a q-refined count of rational tropical curves satisfying higher valency conditions. As a corollary, we obtain a geometric proof of the deformation invariance of this tropical count. In particular, our results give an algebro-geometric meaning to the tropical count defined by Blechman and Shustin. Our strategy is to use the logarithmic degeneration formula, and the key new technique is to reduce to computing integrals against double ramification cycles and connect these integrals to the non-commutative KdV hierarchy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信