局部相对论量子场论中的莫尔理论和渐近观测值

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Janik Kruse
{"title":"局部相对论量子场论中的莫尔理论和渐近观测值","authors":"Janik Kruse","doi":"10.1007/s00220-024-05091-7","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the convergence of Araki–Haag detectors in any Haag–Kastler quantum field theory with an upper and lower mass gap. We cover the case of a single Araki–Haag detector on states of bounded energy, which are selected from the absolutely continuous part of the energy-momentum spectrum sufficiently close to the lower boundary of the multi-particle spectrum. These states essentially encompass those states in the multi-particle spectrum lying below the three-particle threshold. In our proof, we draw on insights from proofs of asymptotic completeness in quantum mechanics. Notably, we apply Mourre’s conjugate operator method for the first time within the framework of Haag–Kastler quantum field theory. Furthermore, we discuss applications of our findings for the problem of asymptotic completeness in local relativistic quantum field theory.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05091-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Mourre Theory and Asymptotic Observables in Local Relativistic Quantum Field Theory\",\"authors\":\"Janik Kruse\",\"doi\":\"10.1007/s00220-024-05091-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove the convergence of Araki–Haag detectors in any Haag–Kastler quantum field theory with an upper and lower mass gap. We cover the case of a single Araki–Haag detector on states of bounded energy, which are selected from the absolutely continuous part of the energy-momentum spectrum sufficiently close to the lower boundary of the multi-particle spectrum. These states essentially encompass those states in the multi-particle spectrum lying below the three-particle threshold. In our proof, we draw on insights from proofs of asymptotic completeness in quantum mechanics. Notably, we apply Mourre’s conjugate operator method for the first time within the framework of Haag–Kastler quantum field theory. Furthermore, we discuss applications of our findings for the problem of asymptotic completeness in local relativistic quantum field theory.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05091-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05091-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05091-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了荒木-哈格探测器在任何具有上下质量间隙的哈格-卡斯勒量子场论中的收敛性。我们研究了单个荒木-哈格探测器对有界能量态的情况,这些态是从能量-动量谱的绝对连续部分中挑选出来的,足够接近多粒子谱的下边界。这些态基本上包括多粒子谱中低于三粒子阈值的那些态。在我们的证明中,我们借鉴了量子力学渐近完备性证明的见解。值得注意的是,我们首次在哈格-卡斯勒量子场论框架内应用了穆尔的共轭算子方法。此外,我们还讨论了我们的发现在局部相对论量子场论渐近完备性问题中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mourre Theory and Asymptotic Observables in Local Relativistic Quantum Field Theory

Mourre Theory and Asymptotic Observables in Local Relativistic Quantum Field Theory

We prove the convergence of Araki–Haag detectors in any Haag–Kastler quantum field theory with an upper and lower mass gap. We cover the case of a single Araki–Haag detector on states of bounded energy, which are selected from the absolutely continuous part of the energy-momentum spectrum sufficiently close to the lower boundary of the multi-particle spectrum. These states essentially encompass those states in the multi-particle spectrum lying below the three-particle threshold. In our proof, we draw on insights from proofs of asymptotic completeness in quantum mechanics. Notably, we apply Mourre’s conjugate operator method for the first time within the framework of Haag–Kastler quantum field theory. Furthermore, we discuss applications of our findings for the problem of asymptotic completeness in local relativistic quantum field theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信