{"title":"局部相对论量子场论中的莫尔理论和渐近观测值","authors":"Janik Kruse","doi":"10.1007/s00220-024-05091-7","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the convergence of Araki–Haag detectors in any Haag–Kastler quantum field theory with an upper and lower mass gap. We cover the case of a single Araki–Haag detector on states of bounded energy, which are selected from the absolutely continuous part of the energy-momentum spectrum sufficiently close to the lower boundary of the multi-particle spectrum. These states essentially encompass those states in the multi-particle spectrum lying below the three-particle threshold. In our proof, we draw on insights from proofs of asymptotic completeness in quantum mechanics. Notably, we apply Mourre’s conjugate operator method for the first time within the framework of Haag–Kastler quantum field theory. Furthermore, we discuss applications of our findings for the problem of asymptotic completeness in local relativistic quantum field theory.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05091-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Mourre Theory and Asymptotic Observables in Local Relativistic Quantum Field Theory\",\"authors\":\"Janik Kruse\",\"doi\":\"10.1007/s00220-024-05091-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove the convergence of Araki–Haag detectors in any Haag–Kastler quantum field theory with an upper and lower mass gap. We cover the case of a single Araki–Haag detector on states of bounded energy, which are selected from the absolutely continuous part of the energy-momentum spectrum sufficiently close to the lower boundary of the multi-particle spectrum. These states essentially encompass those states in the multi-particle spectrum lying below the three-particle threshold. In our proof, we draw on insights from proofs of asymptotic completeness in quantum mechanics. Notably, we apply Mourre’s conjugate operator method for the first time within the framework of Haag–Kastler quantum field theory. Furthermore, we discuss applications of our findings for the problem of asymptotic completeness in local relativistic quantum field theory.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"405 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05091-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05091-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05091-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Mourre Theory and Asymptotic Observables in Local Relativistic Quantum Field Theory
We prove the convergence of Araki–Haag detectors in any Haag–Kastler quantum field theory with an upper and lower mass gap. We cover the case of a single Araki–Haag detector on states of bounded energy, which are selected from the absolutely continuous part of the energy-momentum spectrum sufficiently close to the lower boundary of the multi-particle spectrum. These states essentially encompass those states in the multi-particle spectrum lying below the three-particle threshold. In our proof, we draw on insights from proofs of asymptotic completeness in quantum mechanics. Notably, we apply Mourre’s conjugate operator method for the first time within the framework of Haag–Kastler quantum field theory. Furthermore, we discuss applications of our findings for the problem of asymptotic completeness in local relativistic quantum field theory.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.