金融投资组合管理的深度强化学习框架

Jinyang Li
{"title":"金融投资组合管理的深度强化学习框架","authors":"Jinyang Li","doi":"arxiv-2409.08426","DOIUrl":null,"url":null,"abstract":"In this research paper, we investigate into a paper named \"A Deep\nReinforcement Learning Framework for the Financial Portfolio Management\nProblem\" [arXiv:1706.10059]. It is a portfolio management problem which is\nsolved by deep learning techniques. The original paper proposes a\nfinancial-model-free reinforcement learning framework, which consists of the\nEnsemble of Identical Independent Evaluators (EIIE) topology, a\nPortfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL)\nscheme, and a fully exploiting and explicit reward function. Three different\ninstants are used to realize this framework, namely a Convolutional Neural\nNetwork (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term\nMemory (LSTM). The performance is then examined by comparing to a number of\nrecently reviewed or published portfolio-selection strategies. We have\nsuccessfully replicated their implementations and evaluations. Besides, we\nfurther apply this framework in the stock market, instead of the cryptocurrency\nmarket that the original paper uses. The experiment in the cryptocurrency\nmarket is consistent with the original paper, which achieve superior returns.\nBut it doesn't perform as well when applied in the stock market.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Reinforcement Learning Framework For Financial Portfolio Management\",\"authors\":\"Jinyang Li\",\"doi\":\"arxiv-2409.08426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research paper, we investigate into a paper named \\\"A Deep\\nReinforcement Learning Framework for the Financial Portfolio Management\\nProblem\\\" [arXiv:1706.10059]. It is a portfolio management problem which is\\nsolved by deep learning techniques. The original paper proposes a\\nfinancial-model-free reinforcement learning framework, which consists of the\\nEnsemble of Identical Independent Evaluators (EIIE) topology, a\\nPortfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL)\\nscheme, and a fully exploiting and explicit reward function. Three different\\ninstants are used to realize this framework, namely a Convolutional Neural\\nNetwork (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term\\nMemory (LSTM). The performance is then examined by comparing to a number of\\nrecently reviewed or published portfolio-selection strategies. We have\\nsuccessfully replicated their implementations and evaluations. Besides, we\\nfurther apply this framework in the stock market, instead of the cryptocurrency\\nmarket that the original paper uses. The experiment in the cryptocurrency\\nmarket is consistent with the original paper, which achieve superior returns.\\nBut it doesn't perform as well when applied in the stock market.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究论文中,我们对一篇名为 "金融投资组合管理问题的深度强化学习框架"[arXiv:1706.10059]的论文进行了研究。这是一个利用深度学习技术解决的投资组合管理问题。原论文提出了一个无金融模型的强化学习框架,该框架由相同独立评估者集合(EIIE)拓扑结构、投资组合矢量存储器(PVM)、在线随机批量学习(OSBL)方案和一个充分开发的显式奖励函数组成。为了实现这一框架,我们使用了三种不同的变量,即卷积神经网络(CNN)、基本递归神经网络(RNN)和长短期记忆(LSTM)。然后,通过与最近审查或发布的一些投资组合选择策略进行比较,对其性能进行了检验。我们成功地复制了它们的实现和评估。此外,我们还将这一框架进一步应用于股票市场,而不是原论文中使用的加密货币市场。在加密货币市场上的实验结果与原论文一致,都取得了优异的回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Reinforcement Learning Framework For Financial Portfolio Management
In this research paper, we investigate into a paper named "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem" [arXiv:1706.10059]. It is a portfolio management problem which is solved by deep learning techniques. The original paper proposes a financial-model-free reinforcement learning framework, which consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL) scheme, and a fully exploiting and explicit reward function. Three different instants are used to realize this framework, namely a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory (LSTM). The performance is then examined by comparing to a number of recently reviewed or published portfolio-selection strategies. We have successfully replicated their implementations and evaluations. Besides, we further apply this framework in the stock market, instead of the cryptocurrency market that the original paper uses. The experiment in the cryptocurrency market is consistent with the original paper, which achieve superior returns. But it doesn't perform as well when applied in the stock market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信