基于单模-无芯-七芯光纤结构的反射式高灵敏度湿度传感器

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Min Shao;Yang Yu;Hong Gao;Yang Song;Xueguang Qiao
{"title":"基于单模-无芯-七芯光纤结构的反射式高灵敏度湿度传感器","authors":"Min Shao;Yang Yu;Hong Gao;Yang Song;Xueguang Qiao","doi":"10.1109/LPT.2024.3462417","DOIUrl":null,"url":null,"abstract":"A reflective high-sensitive humidity sensor based on a brief no-core fiber (NCF) sandwiched between a single mode fiber (SMF) and a short section of seven-core fiber (SCF) is experimentally demonstrated. The NCF is employed as a coupler to excite and couple the core fundamental mode and the high-order modes in SCF. The reflection spectrum of the multimodal interference is strongly integrated with the surrounding ambient humidity. An enhanced humidity sensitivity of -0.639 dB/%RH over the humidity range of 25-76 %RH is achieved. The sensor is experimentally investigated for two applications: human breathing and soil moisture. The response/recovery time for human breathing is 0.82 s/0.86 s. And a high sensitivity of −0.439 dB/%RH is obtained in the soil moisture range of 36-74.9 %RH. Therefore, the proposed sensor is proved to be an excellent humidity sensor candidate for compact size, high sensitivity, ease of fabrication, low-cost intensity detection and all-fiber configuration.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 21","pages":"1273-1276"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reflective High-Sensitivity Humidity Sensor Based on Single Mode-No Core-Seven Core Fiber Structure\",\"authors\":\"Min Shao;Yang Yu;Hong Gao;Yang Song;Xueguang Qiao\",\"doi\":\"10.1109/LPT.2024.3462417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A reflective high-sensitive humidity sensor based on a brief no-core fiber (NCF) sandwiched between a single mode fiber (SMF) and a short section of seven-core fiber (SCF) is experimentally demonstrated. The NCF is employed as a coupler to excite and couple the core fundamental mode and the high-order modes in SCF. The reflection spectrum of the multimodal interference is strongly integrated with the surrounding ambient humidity. An enhanced humidity sensitivity of -0.639 dB/%RH over the humidity range of 25-76 %RH is achieved. The sensor is experimentally investigated for two applications: human breathing and soil moisture. The response/recovery time for human breathing is 0.82 s/0.86 s. And a high sensitivity of −0.439 dB/%RH is obtained in the soil moisture range of 36-74.9 %RH. Therefore, the proposed sensor is proved to be an excellent humidity sensor candidate for compact size, high sensitivity, ease of fabrication, low-cost intensity detection and all-fiber configuration.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"36 21\",\"pages\":\"1273-1276\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681528/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10681528/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

实验演示了一种基于夹在单模光纤(SMF)和短段七芯光纤(SCF)之间的简短无芯光纤(NCF)的反射式高灵敏湿度传感器。NCF 被用作耦合器,用于激发和耦合 SCF 中的纤芯基模和高阶模。多模态干涉的反射光谱与周围环境湿度密切相关。在 25%-76%RH 的湿度范围内,湿度灵敏度提高到 -0.639 dB/%RH。该传感器针对两种应用进行了实验研究:人体呼吸和土壤湿度。人体呼吸的响应/恢复时间为 0.82 秒/0.86 秒;在 36-74.9 %RH 的土壤湿度范围内,灵敏度高达 -0.439 dB/%RH。因此,该传感器具有体积小、灵敏度高、易于制造、强度检测成本低和全纤维配置等优点,被证明是一种优秀的湿度传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reflective High-Sensitivity Humidity Sensor Based on Single Mode-No Core-Seven Core Fiber Structure
A reflective high-sensitive humidity sensor based on a brief no-core fiber (NCF) sandwiched between a single mode fiber (SMF) and a short section of seven-core fiber (SCF) is experimentally demonstrated. The NCF is employed as a coupler to excite and couple the core fundamental mode and the high-order modes in SCF. The reflection spectrum of the multimodal interference is strongly integrated with the surrounding ambient humidity. An enhanced humidity sensitivity of -0.639 dB/%RH over the humidity range of 25-76 %RH is achieved. The sensor is experimentally investigated for two applications: human breathing and soil moisture. The response/recovery time for human breathing is 0.82 s/0.86 s. And a high sensitivity of −0.439 dB/%RH is obtained in the soil moisture range of 36-74.9 %RH. Therefore, the proposed sensor is proved to be an excellent humidity sensor candidate for compact size, high sensitivity, ease of fabrication, low-cost intensity detection and all-fiber configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信