Mohamed S Othman,Rafaqat Hussain,Fazal Rahim,Hayat Ullah,Shoaib Khan,Muhammad Taha,Mohamed A Fareid,Anas T Altaleb,Shimaa M Aboelnaga,Syed Adnan Ali Shah
{"title":"苯并恶唑杂化类似物的合成、生物学和计算评估,作为潜在的抗阿尔茨海默氏症药物。","authors":"Mohamed S Othman,Rafaqat Hussain,Fazal Rahim,Hayat Ullah,Shoaib Khan,Muhammad Taha,Mohamed A Fareid,Anas T Altaleb,Shimaa M Aboelnaga,Syed Adnan Ali Shah","doi":"10.1080/17568919.2024.2393569","DOIUrl":null,"url":null,"abstract":"Aim: Current study aims exploration of bis-benzoxazole bearing bis-Schiff base scaffolds (1-16) as anti-Alzheimer's agents.Materials & methods: 2-aminophenol is used as starting materials which react with different reagents in different step to give us bis-benzoxazole bearing bis-Schiff base analogs. NMR and HREI-MS techniques were used for characterization. All derivatives demonstrated varied range of activities with IC50 values 1.10 ± 0.40-24.50 ± 0.90 μM against acetylcholinesterase (AChE) and 1.90 ± 0.70-28.60 ± 0.60 μM against butyrylcholinesterase (BuChE) in contrast to donepezil. In both cases, analog-3 was found most potent. Molecular docking explored modes of interactions between scaffolds and receptor sites of targeted enzymes.Conclusion: This study offering promising approach for optimization and development of potent inhibitors of cholinesterase enzymes.","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"25 1","pages":"1-11"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, biological and computational evaluation of benzoxazole hybrid analogs as potential anti-Alzheimer's agents.\",\"authors\":\"Mohamed S Othman,Rafaqat Hussain,Fazal Rahim,Hayat Ullah,Shoaib Khan,Muhammad Taha,Mohamed A Fareid,Anas T Altaleb,Shimaa M Aboelnaga,Syed Adnan Ali Shah\",\"doi\":\"10.1080/17568919.2024.2393569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: Current study aims exploration of bis-benzoxazole bearing bis-Schiff base scaffolds (1-16) as anti-Alzheimer's agents.Materials & methods: 2-aminophenol is used as starting materials which react with different reagents in different step to give us bis-benzoxazole bearing bis-Schiff base analogs. NMR and HREI-MS techniques were used for characterization. All derivatives demonstrated varied range of activities with IC50 values 1.10 ± 0.40-24.50 ± 0.90 μM against acetylcholinesterase (AChE) and 1.90 ± 0.70-28.60 ± 0.60 μM against butyrylcholinesterase (BuChE) in contrast to donepezil. In both cases, analog-3 was found most potent. Molecular docking explored modes of interactions between scaffolds and receptor sites of targeted enzymes.Conclusion: This study offering promising approach for optimization and development of potent inhibitors of cholinesterase enzymes.\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\"25 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2393569\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2393569","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Synthesis, biological and computational evaluation of benzoxazole hybrid analogs as potential anti-Alzheimer's agents.
Aim: Current study aims exploration of bis-benzoxazole bearing bis-Schiff base scaffolds (1-16) as anti-Alzheimer's agents.Materials & methods: 2-aminophenol is used as starting materials which react with different reagents in different step to give us bis-benzoxazole bearing bis-Schiff base analogs. NMR and HREI-MS techniques were used for characterization. All derivatives demonstrated varied range of activities with IC50 values 1.10 ± 0.40-24.50 ± 0.90 μM against acetylcholinesterase (AChE) and 1.90 ± 0.70-28.60 ± 0.60 μM against butyrylcholinesterase (BuChE) in contrast to donepezil. In both cases, analog-3 was found most potent. Molecular docking explored modes of interactions between scaffolds and receptor sites of targeted enzymes.Conclusion: This study offering promising approach for optimization and development of potent inhibitors of cholinesterase enzymes.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.