Katarzyna Pacyga-Prus, Tereza Hornikova, Dagmar Srutkova, Katarzyna Leszczynska-Nowak, Agnieszka Zablocka, Martin Schwarzer, Sabina Gorska
{"title":"青春期双歧杆菌 CCDM 368 的多糖 BAP1 通过抑制小鼠的 Th2 免疫,减轻卵清蛋白诱发的过敏症","authors":"Katarzyna Pacyga-Prus, Tereza Hornikova, Dagmar Srutkova, Katarzyna Leszczynska-Nowak, Agnieszka Zablocka, Martin Schwarzer, Sabina Gorska","doi":"10.1101/2024.09.14.613063","DOIUrl":null,"url":null,"abstract":"Allergies have become a growing problem and the number of cases is increasing yearly. Administration of postbiotics, well-defined bacterial molecules, is gaining attention as a novel and promising strategy to ameliorate the allergic burden. The BAP1 polysaccharide (PS) of Bifidobacterium adolescentis CCDM 368, was previously characterized by us regarding its structure and in vitro immunomodulatory properties. Here, to decipher the effect of BAP1 on immune system development, it was intranasally (i.n.) administered to germ-free mice. We observed increased IgA in bronchoalveolar lavage (BAL) fluid, decreased CCL2 production, and higher Rorc gene expression in the lung. The intranasal administration of BAP1 reduced lung inflammation and decreased eosinophils numbers in BAL in the ovalbumin-induced allergy mouse model. Moreover, BAP1 decreased OVA-specific IgE levels in sera and Th2-related cytokines in OVA-stimulated splenocytes and lung cells. Finally, increased Rorc and inhibited Il10 gene expression were observed in lung tissue indicating their possible role in BAP1 function. Our findings support and expand on our previous in vitro and ex vivo studies by demonstrating that BAP1, with a unique chemical structure, induces a specific immunomodulatory effect in the host and could be potentially used for alleviating allergic diseases.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polysaccharide BAP1 of Bifidobacterium adolescentis CCDM 368 attenuates ovalbumin-induced allergy through inhibition of Th2 immunity in mice\",\"authors\":\"Katarzyna Pacyga-Prus, Tereza Hornikova, Dagmar Srutkova, Katarzyna Leszczynska-Nowak, Agnieszka Zablocka, Martin Schwarzer, Sabina Gorska\",\"doi\":\"10.1101/2024.09.14.613063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Allergies have become a growing problem and the number of cases is increasing yearly. Administration of postbiotics, well-defined bacterial molecules, is gaining attention as a novel and promising strategy to ameliorate the allergic burden. The BAP1 polysaccharide (PS) of Bifidobacterium adolescentis CCDM 368, was previously characterized by us regarding its structure and in vitro immunomodulatory properties. Here, to decipher the effect of BAP1 on immune system development, it was intranasally (i.n.) administered to germ-free mice. We observed increased IgA in bronchoalveolar lavage (BAL) fluid, decreased CCL2 production, and higher Rorc gene expression in the lung. The intranasal administration of BAP1 reduced lung inflammation and decreased eosinophils numbers in BAL in the ovalbumin-induced allergy mouse model. Moreover, BAP1 decreased OVA-specific IgE levels in sera and Th2-related cytokines in OVA-stimulated splenocytes and lung cells. Finally, increased Rorc and inhibited Il10 gene expression were observed in lung tissue indicating their possible role in BAP1 function. Our findings support and expand on our previous in vitro and ex vivo studies by demonstrating that BAP1, with a unique chemical structure, induces a specific immunomodulatory effect in the host and could be potentially used for alleviating allergic diseases.\",\"PeriodicalId\":501357,\"journal\":{\"name\":\"bioRxiv - Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.14.613063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.14.613063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
过敏已成为一个日益严重的问题,病例数量每年都在增加。作为一种新型的、有前景的改善过敏性疾病的策略,后生物制剂(定义明确的细菌分子)的应用正受到越来越多的关注。我们曾对青春期双歧杆菌 CCDM 368 的 BAP1 多糖(PS)的结构和体外免疫调节特性进行过研究。在此,为了解读 BAP1 对免疫系统发育的影响,我们给无菌小鼠鼻内注射了 BAP1 多糖。我们观察到支气管肺泡灌洗液(BAL)中的 IgA 增加、CCL2 生成减少以及肺部 Rorc 基因表达增加。在卵清蛋白诱导的过敏小鼠模型中,鼻内注射 BAP1 可减轻肺部炎症,减少 BAL 中嗜酸性粒细胞的数量。此外,BAP1 还能降低血清中的 OVA 特异性 IgE 水平以及 OVA 刺激的脾细胞和肺细胞中的 Th2 相关细胞因子。最后,在肺组织中观察到 Rorc 基因表达增加,Il10 基因表达受到抑制,这表明它们可能在 BAP1 的功能中发挥作用。我们的研究结果支持并扩展了之前的体外和体内研究,证明了 BAP1 具有独特的化学结构,能诱导宿主产生特异性免疫调节效应,可用于缓解过敏性疾病。
Polysaccharide BAP1 of Bifidobacterium adolescentis CCDM 368 attenuates ovalbumin-induced allergy through inhibition of Th2 immunity in mice
Allergies have become a growing problem and the number of cases is increasing yearly. Administration of postbiotics, well-defined bacterial molecules, is gaining attention as a novel and promising strategy to ameliorate the allergic burden. The BAP1 polysaccharide (PS) of Bifidobacterium adolescentis CCDM 368, was previously characterized by us regarding its structure and in vitro immunomodulatory properties. Here, to decipher the effect of BAP1 on immune system development, it was intranasally (i.n.) administered to germ-free mice. We observed increased IgA in bronchoalveolar lavage (BAL) fluid, decreased CCL2 production, and higher Rorc gene expression in the lung. The intranasal administration of BAP1 reduced lung inflammation and decreased eosinophils numbers in BAL in the ovalbumin-induced allergy mouse model. Moreover, BAP1 decreased OVA-specific IgE levels in sera and Th2-related cytokines in OVA-stimulated splenocytes and lung cells. Finally, increased Rorc and inhibited Il10 gene expression were observed in lung tissue indicating their possible role in BAP1 function. Our findings support and expand on our previous in vitro and ex vivo studies by demonstrating that BAP1, with a unique chemical structure, induces a specific immunomodulatory effect in the host and could be potentially used for alleviating allergic diseases.