Guangzhou Deng , Ming Li , Yanhua Wang , Zhanwei Hu
{"title":"各种飞行条件下气流热融冰过程的研究","authors":"Guangzhou Deng , Ming Li , Yanhua Wang , Zhanwei Hu","doi":"10.1016/j.ijthermalsci.2024.109430","DOIUrl":null,"url":null,"abstract":"<div><p>The challenge of preventing and removing ice from exposed regions of aircraft is a significant engineering concern. Understanding the melting process of ice due to aerodynamic heating during flight is essential for developing UAV flight strategies in icy conditions. This paper analyzes the heat transfer mechanisms involved in airflow over ice and introduces a theoretical model to estimate the ice melting rate, using principles of turbulent heat transfer at the stagnation point. The study also discusses the impact of environmental conditions on ice melting rates. Findings indicate that the melting speed of the ice surface exhibits a negative linear correlation with the initial temperature of the ice, whereas it shows a nonlinear correlation with airflow velocity and total temperature of the incoming flow. Lower airflow velocity or total temperature of the incoming flow enhances the sensitivity of ice melting speed to changes. Additionally, lower ice density results in a higher melting speed, showing an exponential relationship with factors like average droplet diameter, airflow velocity, and airfoil leading edge diameter in the cloud field during icing. Experiments conducted using a small jet test bench and an icing wind tunnel confirmed the impact of varying conditions on ice melting rates. The deviation between experimental results and theoretical predictions was under 5 %. These conclusions offer valuable insights for flight safety planning of unprotected iced aircraft in challenging environments.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109430"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of airflow thermal ice melting process under various flight conditions\",\"authors\":\"Guangzhou Deng , Ming Li , Yanhua Wang , Zhanwei Hu\",\"doi\":\"10.1016/j.ijthermalsci.2024.109430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The challenge of preventing and removing ice from exposed regions of aircraft is a significant engineering concern. Understanding the melting process of ice due to aerodynamic heating during flight is essential for developing UAV flight strategies in icy conditions. This paper analyzes the heat transfer mechanisms involved in airflow over ice and introduces a theoretical model to estimate the ice melting rate, using principles of turbulent heat transfer at the stagnation point. The study also discusses the impact of environmental conditions on ice melting rates. Findings indicate that the melting speed of the ice surface exhibits a negative linear correlation with the initial temperature of the ice, whereas it shows a nonlinear correlation with airflow velocity and total temperature of the incoming flow. Lower airflow velocity or total temperature of the incoming flow enhances the sensitivity of ice melting speed to changes. Additionally, lower ice density results in a higher melting speed, showing an exponential relationship with factors like average droplet diameter, airflow velocity, and airfoil leading edge diameter in the cloud field during icing. Experiments conducted using a small jet test bench and an icing wind tunnel confirmed the impact of varying conditions on ice melting rates. The deviation between experimental results and theoretical predictions was under 5 %. These conclusions offer valuable insights for flight safety planning of unprotected iced aircraft in challenging environments.</p></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"208 \",\"pages\":\"Article 109430\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924005520\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924005520","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation of airflow thermal ice melting process under various flight conditions
The challenge of preventing and removing ice from exposed regions of aircraft is a significant engineering concern. Understanding the melting process of ice due to aerodynamic heating during flight is essential for developing UAV flight strategies in icy conditions. This paper analyzes the heat transfer mechanisms involved in airflow over ice and introduces a theoretical model to estimate the ice melting rate, using principles of turbulent heat transfer at the stagnation point. The study also discusses the impact of environmental conditions on ice melting rates. Findings indicate that the melting speed of the ice surface exhibits a negative linear correlation with the initial temperature of the ice, whereas it shows a nonlinear correlation with airflow velocity and total temperature of the incoming flow. Lower airflow velocity or total temperature of the incoming flow enhances the sensitivity of ice melting speed to changes. Additionally, lower ice density results in a higher melting speed, showing an exponential relationship with factors like average droplet diameter, airflow velocity, and airfoil leading edge diameter in the cloud field during icing. Experiments conducted using a small jet test bench and an icing wind tunnel confirmed the impact of varying conditions on ice melting rates. The deviation between experimental results and theoretical predictions was under 5 %. These conclusions offer valuable insights for flight safety planning of unprotected iced aircraft in challenging environments.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.