Ee Yang Teoh, Muhammad Asyraf Mohd Amnan, Siti Nurfadhlina Mohd Noor, Mohd Fadhli Hamdan, Su-Ee Lau, Nadiya Akmal Baharum, Chee How Teo, Boon Chin Tan
{"title":"超越表象:深入探究洪水胁迫下的植物信号传导","authors":"Ee Yang Teoh, Muhammad Asyraf Mohd Amnan, Siti Nurfadhlina Mohd Noor, Mohd Fadhli Hamdan, Su-Ee Lau, Nadiya Akmal Baharum, Chee How Teo, Boon Chin Tan","doi":"10.1007/s10725-024-01215-0","DOIUrl":null,"url":null,"abstract":"<p>Flooding is a critical environmental challenge that affects plant growth and development, and its frequency and severity are expected to increase with climate change. Plants have evolved diverse acclimation responses to survive under unfavorable conditions. Some plants adopt either escape or quiescence strategies when submerged. In an escape strategy, plants elongate their internodes to maintain essential gas exchange, whereas in a quiescent strategy, they rely on carbohydrate reserves to sustain vital metabolic processes during submergence. Ethylene is a key player in plant adaptation to flooding and modulates signaling and metabolic responses. Although significant progress has been made in unraveling the fundamental physiological and molecular mechanisms associated with ethylene-mediated plant responses to flooding stress, our knowledge in this field is still incomplete. Understanding how plants cope with unforeseen flood events is crucial for developing resilient crop varieties. This review provides recent discoveries and an overview of plant responses and tolerance mechanisms to flooding stress, encompassing cellular signaling and morphological adaptations. By examining these aspects, we aimed to catalyze innovative approaches for crop improvement to enhance flood resilience.</p>","PeriodicalId":20412,"journal":{"name":"Plant Growth Regulation","volume":"20 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the surface: delving into plant signaling during flooding stress\",\"authors\":\"Ee Yang Teoh, Muhammad Asyraf Mohd Amnan, Siti Nurfadhlina Mohd Noor, Mohd Fadhli Hamdan, Su-Ee Lau, Nadiya Akmal Baharum, Chee How Teo, Boon Chin Tan\",\"doi\":\"10.1007/s10725-024-01215-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flooding is a critical environmental challenge that affects plant growth and development, and its frequency and severity are expected to increase with climate change. Plants have evolved diverse acclimation responses to survive under unfavorable conditions. Some plants adopt either escape or quiescence strategies when submerged. In an escape strategy, plants elongate their internodes to maintain essential gas exchange, whereas in a quiescent strategy, they rely on carbohydrate reserves to sustain vital metabolic processes during submergence. Ethylene is a key player in plant adaptation to flooding and modulates signaling and metabolic responses. Although significant progress has been made in unraveling the fundamental physiological and molecular mechanisms associated with ethylene-mediated plant responses to flooding stress, our knowledge in this field is still incomplete. Understanding how plants cope with unforeseen flood events is crucial for developing resilient crop varieties. This review provides recent discoveries and an overview of plant responses and tolerance mechanisms to flooding stress, encompassing cellular signaling and morphological adaptations. By examining these aspects, we aimed to catalyze innovative approaches for crop improvement to enhance flood resilience.</p>\",\"PeriodicalId\":20412,\"journal\":{\"name\":\"Plant Growth Regulation\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10725-024-01215-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10725-024-01215-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Beyond the surface: delving into plant signaling during flooding stress
Flooding is a critical environmental challenge that affects plant growth and development, and its frequency and severity are expected to increase with climate change. Plants have evolved diverse acclimation responses to survive under unfavorable conditions. Some plants adopt either escape or quiescence strategies when submerged. In an escape strategy, plants elongate their internodes to maintain essential gas exchange, whereas in a quiescent strategy, they rely on carbohydrate reserves to sustain vital metabolic processes during submergence. Ethylene is a key player in plant adaptation to flooding and modulates signaling and metabolic responses. Although significant progress has been made in unraveling the fundamental physiological and molecular mechanisms associated with ethylene-mediated plant responses to flooding stress, our knowledge in this field is still incomplete. Understanding how plants cope with unforeseen flood events is crucial for developing resilient crop varieties. This review provides recent discoveries and an overview of plant responses and tolerance mechanisms to flooding stress, encompassing cellular signaling and morphological adaptations. By examining these aspects, we aimed to catalyze innovative approaches for crop improvement to enhance flood resilience.
期刊介绍:
Plant Growth Regulation is an international journal publishing original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research using hormonal, physiological, environmental, genetical, biophysical, developmental or molecular approaches to the study of plant growth regulation.
Emphasis is placed on papers presenting the results of original research. Occasional reviews on important topics will also be welcome. All contributions must be in English.