{"title":"关于赤道传播 F 的发生:多维量化评估","authors":"T.V. Sruthi , G. Manju , K.S. Vishnupriya","doi":"10.1016/j.asr.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>The present study investigates the role of gravity wave induced seed perturbations in the occurrence of Equatorial Spread F (ESF) under the influence of the post sunset background conditions modulated by prevailing electrodynamics and neutral wind. Ionospheric foF<sub>2</sub> data sets over geomagnetic equatorial station Trivandrum (8.5°N, 77°E and magnetic dip 0.68°N-corresponding to the period of study) corresponding to vernal and autumnal equinoctial periods encompassing high, low and moderate solar activity years, are used for the study. Meridional wind data is obtained either from ESA’s sun-synchronous satellite GOCE (Gravity field and steady-state Ocean Circulation Explorer) or derived using ionosonde h’F (base height of ionosphere at 2.5 MHz) data from Trivandrum (TVM- 8.5°N, 77°E and magnetic dip 0.68°N) and Sriharikota (SHAR−13.7°N, 80.2°E and magnetic dip 6.9°N-for period of study). This particular study is carried out for geomagnetically quiet days of Vernal Equinox (VE) and Autumnal Equinox (AE) seasons, which are most favoured for ESF occurrence over Indian longitudes. Considering thermospheric wind, ion-neutral collisions, and electric field effects in association with gravity wave seed, threshold curve is generated, which clearly demarcates ESF and NSF (Non spread F) days. Previous studies have addressed ESF variability in electrodynamical domain alone (wherein the layer is above a threshold level). The present study, for the first time, succeeds in demarcating ESF and NSF days by incorporating effects of electric field, neutral wind, collisional RT instability term, and gravity wave seed perturbations simultaneously irrespective of threshold height.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On equatorial spread F occurrence: A multi-dimensional quantitative assessment\",\"authors\":\"T.V. Sruthi , G. Manju , K.S. Vishnupriya\",\"doi\":\"10.1016/j.asr.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study investigates the role of gravity wave induced seed perturbations in the occurrence of Equatorial Spread F (ESF) under the influence of the post sunset background conditions modulated by prevailing electrodynamics and neutral wind. Ionospheric foF<sub>2</sub> data sets over geomagnetic equatorial station Trivandrum (8.5°N, 77°E and magnetic dip 0.68°N-corresponding to the period of study) corresponding to vernal and autumnal equinoctial periods encompassing high, low and moderate solar activity years, are used for the study. Meridional wind data is obtained either from ESA’s sun-synchronous satellite GOCE (Gravity field and steady-state Ocean Circulation Explorer) or derived using ionosonde h’F (base height of ionosphere at 2.5 MHz) data from Trivandrum (TVM- 8.5°N, 77°E and magnetic dip 0.68°N) and Sriharikota (SHAR−13.7°N, 80.2°E and magnetic dip 6.9°N-for period of study). This particular study is carried out for geomagnetically quiet days of Vernal Equinox (VE) and Autumnal Equinox (AE) seasons, which are most favoured for ESF occurrence over Indian longitudes. Considering thermospheric wind, ion-neutral collisions, and electric field effects in association with gravity wave seed, threshold curve is generated, which clearly demarcates ESF and NSF (Non spread F) days. Previous studies have addressed ESF variability in electrodynamical domain alone (wherein the layer is above a threshold level). The present study, for the first time, succeeds in demarcating ESF and NSF days by incorporating effects of electric field, neutral wind, collisional RT instability term, and gravity wave seed perturbations simultaneously irrespective of threshold height.</div></div>\",\"PeriodicalId\":50850,\"journal\":{\"name\":\"Advances in Space Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Space Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273117724009244\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724009244","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
On equatorial spread F occurrence: A multi-dimensional quantitative assessment
The present study investigates the role of gravity wave induced seed perturbations in the occurrence of Equatorial Spread F (ESF) under the influence of the post sunset background conditions modulated by prevailing electrodynamics and neutral wind. Ionospheric foF2 data sets over geomagnetic equatorial station Trivandrum (8.5°N, 77°E and magnetic dip 0.68°N-corresponding to the period of study) corresponding to vernal and autumnal equinoctial periods encompassing high, low and moderate solar activity years, are used for the study. Meridional wind data is obtained either from ESA’s sun-synchronous satellite GOCE (Gravity field and steady-state Ocean Circulation Explorer) or derived using ionosonde h’F (base height of ionosphere at 2.5 MHz) data from Trivandrum (TVM- 8.5°N, 77°E and magnetic dip 0.68°N) and Sriharikota (SHAR−13.7°N, 80.2°E and magnetic dip 6.9°N-for period of study). This particular study is carried out for geomagnetically quiet days of Vernal Equinox (VE) and Autumnal Equinox (AE) seasons, which are most favoured for ESF occurrence over Indian longitudes. Considering thermospheric wind, ion-neutral collisions, and electric field effects in association with gravity wave seed, threshold curve is generated, which clearly demarcates ESF and NSF (Non spread F) days. Previous studies have addressed ESF variability in electrodynamical domain alone (wherein the layer is above a threshold level). The present study, for the first time, succeeds in demarcating ESF and NSF days by incorporating effects of electric field, neutral wind, collisional RT instability term, and gravity wave seed perturbations simultaneously irrespective of threshold height.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.