诊断国家点火装置燃烧等离子体中产生的向上散射氘氚聚变中子(特邀)

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
J. Jeet, B. D. Appelbe, A. J. Crilly, L. Divol, M. Eckart, K. D. Hahn, E. P. Hartouni, A. Hayes, S. Kerr, Y. Kim, E. Mariscal, A. S. Moore, A. Ramirez, G. Rusev, D. J. Schlossberg
{"title":"诊断国家点火装置燃烧等离子体中产生的向上散射氘氚聚变中子(特邀)","authors":"J. Jeet, B. D. Appelbe, A. J. Crilly, L. Divol, M. Eckart, K. D. Hahn, E. P. Hartouni, A. Hayes, S. Kerr, Y. Kim, E. Mariscal, A. S. Moore, A. Ramirez, G. Rusev, D. J. Schlossberg","doi":"10.1063/5.0219671","DOIUrl":null,"url":null,"abstract":"In the push to higher performance fusion plasmas, two critical quantities to diagnose are α-heat deposition that can improve and impurities mixed into the plasma that can limit performance. In high-density, highly collisional inertial confinement fusion burning plasmas, there is a significant probability that deuterium–tritium (DT) fusion products, 14.1 MeV neutrons and 3.5 MeV α-particles, will collide with and deposit energy onto (“up-scatter”) surrounding deuterium and tritium fuel ions. These up-scattered D and T ions can then undergo fusion while in-flight and produce an up-scattered neutron (15–30 MeV). These reaction-in-flight (RIF) neutrons can then be uniquely identified in the measured neutron energy spectrum. The magnitude, shape, and relative size of this spectral feature can inform models of stopping-power in the DT plasma and hence is directly proportional to α-heat deposition. In addition, the RIF spectrum can be related to mix into the burning fuel, particularly relevant for high-Z shell and other emerging National Ignition Facility platforms. The neutron time-of-flight diagnostic upgrades needed to obtain this small signal, ∼10−5 times the primary DT neutron peak, will be discussed. Results from several gain > 1 implosions will be shown and compared to previous RIF spectra. Finally, comparisons of experimental data to a simplified computational model will be made.","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosing up-scattered deuterium–tritium fusion neutrons produced in burning plasmas at the National Ignition Facility (invited)\",\"authors\":\"J. Jeet, B. D. Appelbe, A. J. Crilly, L. Divol, M. Eckart, K. D. Hahn, E. P. Hartouni, A. Hayes, S. Kerr, Y. Kim, E. Mariscal, A. S. Moore, A. Ramirez, G. Rusev, D. J. Schlossberg\",\"doi\":\"10.1063/5.0219671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the push to higher performance fusion plasmas, two critical quantities to diagnose are α-heat deposition that can improve and impurities mixed into the plasma that can limit performance. In high-density, highly collisional inertial confinement fusion burning plasmas, there is a significant probability that deuterium–tritium (DT) fusion products, 14.1 MeV neutrons and 3.5 MeV α-particles, will collide with and deposit energy onto (“up-scatter”) surrounding deuterium and tritium fuel ions. These up-scattered D and T ions can then undergo fusion while in-flight and produce an up-scattered neutron (15–30 MeV). These reaction-in-flight (RIF) neutrons can then be uniquely identified in the measured neutron energy spectrum. The magnitude, shape, and relative size of this spectral feature can inform models of stopping-power in the DT plasma and hence is directly proportional to α-heat deposition. In addition, the RIF spectrum can be related to mix into the burning fuel, particularly relevant for high-Z shell and other emerging National Ignition Facility platforms. The neutron time-of-flight diagnostic upgrades needed to obtain this small signal, ∼10−5 times the primary DT neutron peak, will be discussed. Results from several gain > 1 implosions will be shown and compared to previous RIF spectra. Finally, comparisons of experimental data to a simplified computational model will be made.\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219671\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219671","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

在推动更高性能核聚变等离子体的过程中,有两个关键量需要诊断,一个是可以提高等离子体性能的α-热沉积,另一个是混入等离子体中的杂质。在高密度、高碰撞的惯性约束聚变燃烧等离子体中,氘-氚(DT)聚变产物--14.1 MeV 中子和 3.5 MeV α 粒子--很有可能与周围的氘和氚燃料离子碰撞并沉积能量("向上散射")。这些向上散射的氘和氚离子在飞行过程中会发生聚变,并产生一个向上散射的中子(15-30MeV)。这些飞行中反应(RIF)中子可以在测量到的中子能谱中被唯一识别出来。该光谱特征的大小、形状和相对尺寸可以为 DT 等离子体中的停止功率模型提供信息,因此与 α 热沉积成正比。此外,RIF 光谱还与燃烧燃料的混合有关,尤其与高 Z 壳和其他新兴的国家点火装置平台相关。将讨论为获得这个小信号(DT 中子主峰的 10-5 倍)所需的中子飞行时间诊断升级。将展示几个增益>1内爆的结果,并与以前的RIF光谱进行比较。最后,将把实验数据与简化的计算模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosing up-scattered deuterium–tritium fusion neutrons produced in burning plasmas at the National Ignition Facility (invited)
In the push to higher performance fusion plasmas, two critical quantities to diagnose are α-heat deposition that can improve and impurities mixed into the plasma that can limit performance. In high-density, highly collisional inertial confinement fusion burning plasmas, there is a significant probability that deuterium–tritium (DT) fusion products, 14.1 MeV neutrons and 3.5 MeV α-particles, will collide with and deposit energy onto (“up-scatter”) surrounding deuterium and tritium fuel ions. These up-scattered D and T ions can then undergo fusion while in-flight and produce an up-scattered neutron (15–30 MeV). These reaction-in-flight (RIF) neutrons can then be uniquely identified in the measured neutron energy spectrum. The magnitude, shape, and relative size of this spectral feature can inform models of stopping-power in the DT plasma and hence is directly proportional to α-heat deposition. In addition, the RIF spectrum can be related to mix into the burning fuel, particularly relevant for high-Z shell and other emerging National Ignition Facility platforms. The neutron time-of-flight diagnostic upgrades needed to obtain this small signal, ∼10−5 times the primary DT neutron peak, will be discussed. Results from several gain > 1 implosions will be shown and compared to previous RIF spectra. Finally, comparisons of experimental data to a simplified computational model will be made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信