J. Jeet, B. D. Appelbe, A. J. Crilly, L. Divol, M. Eckart, K. D. Hahn, E. P. Hartouni, A. Hayes, S. Kerr, Y. Kim, E. Mariscal, A. S. Moore, A. Ramirez, G. Rusev, D. J. Schlossberg
{"title":"诊断国家点火装置燃烧等离子体中产生的向上散射氘氚聚变中子(特邀)","authors":"J. Jeet, B. D. Appelbe, A. J. Crilly, L. Divol, M. Eckart, K. D. Hahn, E. P. Hartouni, A. Hayes, S. Kerr, Y. Kim, E. Mariscal, A. S. Moore, A. Ramirez, G. Rusev, D. J. Schlossberg","doi":"10.1063/5.0219671","DOIUrl":null,"url":null,"abstract":"In the push to higher performance fusion plasmas, two critical quantities to diagnose are α-heat deposition that can improve and impurities mixed into the plasma that can limit performance. In high-density, highly collisional inertial confinement fusion burning plasmas, there is a significant probability that deuterium–tritium (DT) fusion products, 14.1 MeV neutrons and 3.5 MeV α-particles, will collide with and deposit energy onto (“up-scatter”) surrounding deuterium and tritium fuel ions. These up-scattered D and T ions can then undergo fusion while in-flight and produce an up-scattered neutron (15–30 MeV). These reaction-in-flight (RIF) neutrons can then be uniquely identified in the measured neutron energy spectrum. The magnitude, shape, and relative size of this spectral feature can inform models of stopping-power in the DT plasma and hence is directly proportional to α-heat deposition. In addition, the RIF spectrum can be related to mix into the burning fuel, particularly relevant for high-Z shell and other emerging National Ignition Facility platforms. The neutron time-of-flight diagnostic upgrades needed to obtain this small signal, ∼10−5 times the primary DT neutron peak, will be discussed. Results from several gain > 1 implosions will be shown and compared to previous RIF spectra. Finally, comparisons of experimental data to a simplified computational model will be made.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosing up-scattered deuterium–tritium fusion neutrons produced in burning plasmas at the National Ignition Facility (invited)\",\"authors\":\"J. Jeet, B. D. Appelbe, A. J. Crilly, L. Divol, M. Eckart, K. D. Hahn, E. P. Hartouni, A. Hayes, S. Kerr, Y. Kim, E. Mariscal, A. S. Moore, A. Ramirez, G. Rusev, D. J. Schlossberg\",\"doi\":\"10.1063/5.0219671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the push to higher performance fusion plasmas, two critical quantities to diagnose are α-heat deposition that can improve and impurities mixed into the plasma that can limit performance. In high-density, highly collisional inertial confinement fusion burning plasmas, there is a significant probability that deuterium–tritium (DT) fusion products, 14.1 MeV neutrons and 3.5 MeV α-particles, will collide with and deposit energy onto (“up-scatter”) surrounding deuterium and tritium fuel ions. These up-scattered D and T ions can then undergo fusion while in-flight and produce an up-scattered neutron (15–30 MeV). These reaction-in-flight (RIF) neutrons can then be uniquely identified in the measured neutron energy spectrum. The magnitude, shape, and relative size of this spectral feature can inform models of stopping-power in the DT plasma and hence is directly proportional to α-heat deposition. In addition, the RIF spectrum can be related to mix into the burning fuel, particularly relevant for high-Z shell and other emerging National Ignition Facility platforms. The neutron time-of-flight diagnostic upgrades needed to obtain this small signal, ∼10−5 times the primary DT neutron peak, will be discussed. Results from several gain > 1 implosions will be shown and compared to previous RIF spectra. Finally, comparisons of experimental data to a simplified computational model will be made.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219671\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219671","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Diagnosing up-scattered deuterium–tritium fusion neutrons produced in burning plasmas at the National Ignition Facility (invited)
In the push to higher performance fusion plasmas, two critical quantities to diagnose are α-heat deposition that can improve and impurities mixed into the plasma that can limit performance. In high-density, highly collisional inertial confinement fusion burning plasmas, there is a significant probability that deuterium–tritium (DT) fusion products, 14.1 MeV neutrons and 3.5 MeV α-particles, will collide with and deposit energy onto (“up-scatter”) surrounding deuterium and tritium fuel ions. These up-scattered D and T ions can then undergo fusion while in-flight and produce an up-scattered neutron (15–30 MeV). These reaction-in-flight (RIF) neutrons can then be uniquely identified in the measured neutron energy spectrum. The magnitude, shape, and relative size of this spectral feature can inform models of stopping-power in the DT plasma and hence is directly proportional to α-heat deposition. In addition, the RIF spectrum can be related to mix into the burning fuel, particularly relevant for high-Z shell and other emerging National Ignition Facility platforms. The neutron time-of-flight diagnostic upgrades needed to obtain this small signal, ∼10−5 times the primary DT neutron peak, will be discussed. Results from several gain > 1 implosions will be shown and compared to previous RIF spectra. Finally, comparisons of experimental data to a simplified computational model will be made.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.