量子阱激光器发电稳定性分析

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
Z. N. Sokolova, L. V. Asryan
{"title":"量子阱激光器发电稳定性分析","authors":"Z. N. Sokolova, L. V. Asryan","doi":"10.1134/s1063782624050154","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A stability analysis of two modes of generation in semiconductor quantum well lasers is performed. These modes correspond to two solutions of the rate equations obtained by taking into account the internal optical loss that depends on the density of charge carriers injected into the laser waveguide region and, hence, on the injection current. It is shown that, in contrast to the first (“conventional”) mode of generation, which is always stable and hence observable, the second (“additional”) mode, which is entirely due to the internal loss that depends on the carrier density, is unstable and hence cannot be observed under the steady-state conditions in the laser structure considered in this work.</p>","PeriodicalId":21760,"journal":{"name":"Semiconductors","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Stability of Generation in Quantum Well Lasers\",\"authors\":\"Z. N. Sokolova, L. V. Asryan\",\"doi\":\"10.1134/s1063782624050154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A stability analysis of two modes of generation in semiconductor quantum well lasers is performed. These modes correspond to two solutions of the rate equations obtained by taking into account the internal optical loss that depends on the density of charge carriers injected into the laser waveguide region and, hence, on the injection current. It is shown that, in contrast to the first (“conventional”) mode of generation, which is always stable and hence observable, the second (“additional”) mode, which is entirely due to the internal loss that depends on the carrier density, is unstable and hence cannot be observed under the steady-state conditions in the laser structure considered in this work.</p>\",\"PeriodicalId\":21760,\"journal\":{\"name\":\"Semiconductors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductors\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063782624050154\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063782624050154","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要 对半导体量子阱激光器中产生的两种模式进行了稳定性分析。这些模式与速率方程的两种解相对应,前者考虑了内部光学损耗,后者取决于注入激光波导区的电荷载流子密度,因此也取决于注入电流。结果表明,第一种("传统")生成模式始终是稳定的,因此是可以观测到的,而第二种("附加")模式则完全是由于取决于载流子密度的内部损耗造成的,它是不稳定的,因此在本研究中考虑的激光结构的稳态条件下是无法观测到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of Stability of Generation in Quantum Well Lasers

Analysis of Stability of Generation in Quantum Well Lasers

Abstract

A stability analysis of two modes of generation in semiconductor quantum well lasers is performed. These modes correspond to two solutions of the rate equations obtained by taking into account the internal optical loss that depends on the density of charge carriers injected into the laser waveguide region and, hence, on the injection current. It is shown that, in contrast to the first (“conventional”) mode of generation, which is always stable and hence observable, the second (“additional”) mode, which is entirely due to the internal loss that depends on the carrier density, is unstable and hence cannot be observed under the steady-state conditions in the laser structure considered in this work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semiconductors
Semiconductors 物理-物理:凝聚态物理
CiteScore
1.50
自引率
28.60%
发文量
131
审稿时长
3-6 weeks
期刊介绍: Publishes the most important work in semiconductor research in the countries of the former Soviet Union. Covers semiconductor theory, transport phenomena in semiconductors, optics, magnetooptics, and electrooptics of semiconductors, semiconductor lasers and semiconductor surface physics. The journal features an extensive book review section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信