用于硼中子俘获疗法的肽功能化金纳米粒子,有望用于胶质母细胞瘤治疗。

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Zhicheng Zhang,Xin Wang,Qi Dai,Yaxin Qin,Xiaoyan Sun,Minoru Suzuki,Xiaoying Ying,Min Han,Qichun Wei
{"title":"用于硼中子俘获疗法的肽功能化金纳米粒子,有望用于胶质母细胞瘤治疗。","authors":"Zhicheng Zhang,Xin Wang,Qi Dai,Yaxin Qin,Xiaoyan Sun,Minoru Suzuki,Xiaoying Ying,Min Han,Qichun Wei","doi":"10.1080/10837450.2024.2406044","DOIUrl":null,"url":null,"abstract":"Glioblastoma is a highly aggressive glioma with limited treatment options. Boron neutron capture therapy (BNCT) offers a promising approach for refractory cancers, utilizing boron-10 (10B) and thermal neutrons to generate cytotoxic particles. Effective BNCT depends on selective targeting and retention of 10B in tumors. Current BNCT drugs face issues with rapid clearance and poor tumor accumulation. To address this, we developed gold nanoparticles (AuNPs) functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides as a nanocarrier for Sodium Mercaptododecaborate (BSH), resulting in AuNPs-BSH&PEG-cRGD. In vitro, AuNPs-BSH&PEG-cRGD increased 10B content in GL261 glioma cells by approximately 2.5-fold compared to unmodified AuNPs-BSH&PEG, indicating enhanced targeting due to cRGD's affinity for integrin receptor αvβ3. In a subcutaneous glioma mouse model, 6 hours post-intratumoral administration, the 10B concentration in tumors was 17.98 μg/g for AuNPs-BSH&PEG-cRGD, significantly higher than 0.45 μg/g for BSH. The tumor-to-blood (T/B) and tumor-to-normal tissue (T/N) ratios were also higher for AuNPs-BSH&PEG-cRGD, suggesting improved targeting and retention. This indicates that AuNPs-BSH&PEG-cRGD may enhance BNCT efficacy and minimize normal tissue toxicity. In summary, this study provides a novel strategy for BSH delivery and may broaden the design vision of BNCT nano-boron capture agents.","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":"7 1","pages":"1-20"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peptide-Functionalized Gold Nanoparticles for Boron Neutron Capture Therapy with the potential to use in Glioblastoma Treatment.\",\"authors\":\"Zhicheng Zhang,Xin Wang,Qi Dai,Yaxin Qin,Xiaoyan Sun,Minoru Suzuki,Xiaoying Ying,Min Han,Qichun Wei\",\"doi\":\"10.1080/10837450.2024.2406044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glioblastoma is a highly aggressive glioma with limited treatment options. Boron neutron capture therapy (BNCT) offers a promising approach for refractory cancers, utilizing boron-10 (10B) and thermal neutrons to generate cytotoxic particles. Effective BNCT depends on selective targeting and retention of 10B in tumors. Current BNCT drugs face issues with rapid clearance and poor tumor accumulation. To address this, we developed gold nanoparticles (AuNPs) functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides as a nanocarrier for Sodium Mercaptododecaborate (BSH), resulting in AuNPs-BSH&PEG-cRGD. In vitro, AuNPs-BSH&PEG-cRGD increased 10B content in GL261 glioma cells by approximately 2.5-fold compared to unmodified AuNPs-BSH&PEG, indicating enhanced targeting due to cRGD's affinity for integrin receptor αvβ3. In a subcutaneous glioma mouse model, 6 hours post-intratumoral administration, the 10B concentration in tumors was 17.98 μg/g for AuNPs-BSH&PEG-cRGD, significantly higher than 0.45 μg/g for BSH. The tumor-to-blood (T/B) and tumor-to-normal tissue (T/N) ratios were also higher for AuNPs-BSH&PEG-cRGD, suggesting improved targeting and retention. This indicates that AuNPs-BSH&PEG-cRGD may enhance BNCT efficacy and minimize normal tissue toxicity. In summary, this study provides a novel strategy for BSH delivery and may broaden the design vision of BNCT nano-boron capture agents.\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\"7 1\",\"pages\":\"1-20\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2406044\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2406044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

胶质母细胞瘤是一种侵袭性很强的胶质瘤,治疗方法有限。硼中子俘获疗法(BNCT)利用硼-10(10B)和热中子产生细胞毒性粒子,为难治性癌症的治疗提供了一种前景广阔的方法。有效的 BNCT 取决于 10B 在肿瘤中的选择性靶向和保留。目前的 BNCT 药物面临着清除速度快和肿瘤蓄积性差的问题。为解决这一问题,我们开发了与环精氨酸-甘氨酸-天冬氨酸(cRGD)肽功能化的金纳米粒子(AuNPs),作为巯基十二硼酸钠(BSH)的纳米载体,形成了 AuNPs-BSH&PEG-cRGD。在体外,与未修饰的 AuNPs-BSH&PEG 相比,AuNPs-BSH&PEG-cRGD 使 GL261 脑胶质瘤细胞中的 10B 含量增加了约 2.5 倍,这表明 cRGD 与整合素受体 αvβ3 的亲和力增强了靶向性。在胶质瘤小鼠皮下模型中,瘤内给药 6 小时后,AuNPs-BSH&PEG-cRGD 在肿瘤中的 10B 浓度为 17.98 μg/g,明显高于 BSH 的 0.45 μg/g。AuNPs-BSH&PEG-cRGD的肿瘤-血液(T/B)比和肿瘤-正常组织(T/N)比也更高,表明其靶向性和保留性更好。这表明,AuNPs-BSH&PEG-cRGD 可提高 BNCT 的疗效,并将正常组织的毒性降至最低。总之,本研究为 BSH 的递送提供了一种新策略,可拓宽 BNCT 纳米硼捕获剂的设计视野。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peptide-Functionalized Gold Nanoparticles for Boron Neutron Capture Therapy with the potential to use in Glioblastoma Treatment.
Glioblastoma is a highly aggressive glioma with limited treatment options. Boron neutron capture therapy (BNCT) offers a promising approach for refractory cancers, utilizing boron-10 (10B) and thermal neutrons to generate cytotoxic particles. Effective BNCT depends on selective targeting and retention of 10B in tumors. Current BNCT drugs face issues with rapid clearance and poor tumor accumulation. To address this, we developed gold nanoparticles (AuNPs) functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides as a nanocarrier for Sodium Mercaptododecaborate (BSH), resulting in AuNPs-BSH&PEG-cRGD. In vitro, AuNPs-BSH&PEG-cRGD increased 10B content in GL261 glioma cells by approximately 2.5-fold compared to unmodified AuNPs-BSH&PEG, indicating enhanced targeting due to cRGD's affinity for integrin receptor αvβ3. In a subcutaneous glioma mouse model, 6 hours post-intratumoral administration, the 10B concentration in tumors was 17.98 μg/g for AuNPs-BSH&PEG-cRGD, significantly higher than 0.45 μg/g for BSH. The tumor-to-blood (T/B) and tumor-to-normal tissue (T/N) ratios were also higher for AuNPs-BSH&PEG-cRGD, suggesting improved targeting and retention. This indicates that AuNPs-BSH&PEG-cRGD may enhance BNCT efficacy and minimize normal tissue toxicity. In summary, this study provides a novel strategy for BSH delivery and may broaden the design vision of BNCT nano-boron capture agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信