Ewan D. Wakefield, Erin L. McClymont, Ana P.B. Carneiro, John P. Croxall, Jacob González-Solís, Hannah M.V. Granroth-Wilding, Lesley Thorne, Victoria Warwick-Evans, Andrew G. Wood, Jose C. Xavier, Richard A. Phillips
{"title":"信天翁和大海燕对海冰觅食栖息地的季节性资源追踪和利用","authors":"Ewan D. Wakefield, Erin L. McClymont, Ana P.B. Carneiro, John P. Croxall, Jacob González-Solís, Hannah M.V. Granroth-Wilding, Lesley Thorne, Victoria Warwick-Evans, Andrew G. Wood, Jose C. Xavier, Richard A. Phillips","doi":"10.1016/j.pocean.2024.103334","DOIUrl":null,"url":null,"abstract":"The Antarctic seasonal sea-ice zone (SIZ) is one of the most extensive and dynamic habitats on Earth. In summer, increased insolation and ice melt cause primary production to peak, sustaining large populations of locally-breeding seabirds. Due to their hypermobility, large Procellariiformes, including albatrosses, breeding in the subantarctic also have the potential to access the SIZ and track macroscale resource waves over the Sothern Ocean but the extent to which they do this is poorly known. Here, we analysed the foraging movements of breeding albatrosses and large petrels (seven species, 1298 individuals) recorded using GPS loggers and satellite-transmitters to quantify their use of sea-ice habitats and test whether they tracked seasonal drivers of primary production. Foraging latitudes of white-chinned petrels and black-browed , grey-headed and wandering albatrosses varied sinusoidally over the breeding season, presumably in response to lagged effects of solar irradiance on primary production. Foraging latitudes of northern and southern giant petrels ( and ), and light-mantled albatrosses , exhibited no strong seasonal trend, but the latter two species spent ≥ 20 % of their time in the SIZ during incubation and post-brood, prior to or at the time of the spring ice breakup. Southern giant petrels travelled hundreds of km into the pack ice, encountering sea-ice concentrations up to 100 %, whereas light-mantled albatrosses remained almost exclusively in open water near the Marginal Ice Zone (MIZ). The remaining species spent up to 15 % of their time in the SIZ, typically from 5-7 weeks after breakup, and avoided the MIZ. This supports hypotheses that sea ice presents albatrosses but not giant petrels with physical barriers to flight or foraging, and that open-water-affiliated species use the SIZ only after primary production stimulated by ice melt transfers to intermediate trophic levels. Given that all seven species used the SIZ, it is likely that the phenology and demography of these and many other subantarctic-breeding seabirds are mechanistically linked to sea-ice dynamics. Declines in Antarctic sea ice predicted under climate change could therefore modulate and exacerbate the already unsustainable anthropogenic impacts being experienced by these populations.","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal resource tracking and use of sea-ice foraging habitats by albatrosses and large petrels\",\"authors\":\"Ewan D. Wakefield, Erin L. McClymont, Ana P.B. Carneiro, John P. Croxall, Jacob González-Solís, Hannah M.V. Granroth-Wilding, Lesley Thorne, Victoria Warwick-Evans, Andrew G. Wood, Jose C. Xavier, Richard A. Phillips\",\"doi\":\"10.1016/j.pocean.2024.103334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Antarctic seasonal sea-ice zone (SIZ) is one of the most extensive and dynamic habitats on Earth. In summer, increased insolation and ice melt cause primary production to peak, sustaining large populations of locally-breeding seabirds. Due to their hypermobility, large Procellariiformes, including albatrosses, breeding in the subantarctic also have the potential to access the SIZ and track macroscale resource waves over the Sothern Ocean but the extent to which they do this is poorly known. Here, we analysed the foraging movements of breeding albatrosses and large petrels (seven species, 1298 individuals) recorded using GPS loggers and satellite-transmitters to quantify their use of sea-ice habitats and test whether they tracked seasonal drivers of primary production. Foraging latitudes of white-chinned petrels and black-browed , grey-headed and wandering albatrosses varied sinusoidally over the breeding season, presumably in response to lagged effects of solar irradiance on primary production. Foraging latitudes of northern and southern giant petrels ( and ), and light-mantled albatrosses , exhibited no strong seasonal trend, but the latter two species spent ≥ 20 % of their time in the SIZ during incubation and post-brood, prior to or at the time of the spring ice breakup. Southern giant petrels travelled hundreds of km into the pack ice, encountering sea-ice concentrations up to 100 %, whereas light-mantled albatrosses remained almost exclusively in open water near the Marginal Ice Zone (MIZ). The remaining species spent up to 15 % of their time in the SIZ, typically from 5-7 weeks after breakup, and avoided the MIZ. This supports hypotheses that sea ice presents albatrosses but not giant petrels with physical barriers to flight or foraging, and that open-water-affiliated species use the SIZ only after primary production stimulated by ice melt transfers to intermediate trophic levels. Given that all seven species used the SIZ, it is likely that the phenology and demography of these and many other subantarctic-breeding seabirds are mechanistically linked to sea-ice dynamics. Declines in Antarctic sea ice predicted under climate change could therefore modulate and exacerbate the already unsustainable anthropogenic impacts being experienced by these populations.\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pocean.2024.103334\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.pocean.2024.103334","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Seasonal resource tracking and use of sea-ice foraging habitats by albatrosses and large petrels
The Antarctic seasonal sea-ice zone (SIZ) is one of the most extensive and dynamic habitats on Earth. In summer, increased insolation and ice melt cause primary production to peak, sustaining large populations of locally-breeding seabirds. Due to their hypermobility, large Procellariiformes, including albatrosses, breeding in the subantarctic also have the potential to access the SIZ and track macroscale resource waves over the Sothern Ocean but the extent to which they do this is poorly known. Here, we analysed the foraging movements of breeding albatrosses and large petrels (seven species, 1298 individuals) recorded using GPS loggers and satellite-transmitters to quantify their use of sea-ice habitats and test whether they tracked seasonal drivers of primary production. Foraging latitudes of white-chinned petrels and black-browed , grey-headed and wandering albatrosses varied sinusoidally over the breeding season, presumably in response to lagged effects of solar irradiance on primary production. Foraging latitudes of northern and southern giant petrels ( and ), and light-mantled albatrosses , exhibited no strong seasonal trend, but the latter two species spent ≥ 20 % of their time in the SIZ during incubation and post-brood, prior to or at the time of the spring ice breakup. Southern giant petrels travelled hundreds of km into the pack ice, encountering sea-ice concentrations up to 100 %, whereas light-mantled albatrosses remained almost exclusively in open water near the Marginal Ice Zone (MIZ). The remaining species spent up to 15 % of their time in the SIZ, typically from 5-7 weeks after breakup, and avoided the MIZ. This supports hypotheses that sea ice presents albatrosses but not giant petrels with physical barriers to flight or foraging, and that open-water-affiliated species use the SIZ only after primary production stimulated by ice melt transfers to intermediate trophic levels. Given that all seven species used the SIZ, it is likely that the phenology and demography of these and many other subantarctic-breeding seabirds are mechanistically linked to sea-ice dynamics. Declines in Antarctic sea ice predicted under climate change could therefore modulate and exacerbate the already unsustainable anthropogenic impacts being experienced by these populations.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.