Anahí Coniglio, Giovanni Larama, Sofía Nievas, Natalie L. Cale, Verónica Mora, Daniela Torres, Gastón Lopez, Florencia Donadio, Belén Rodriguez, Anelis Marin, Matias Rovere, Patricio Javier Barra, Mark F. Belmonte, Emanuel Maltempi de Souza, Fabricio Cassán
{"title":"紫杉醇介导的玉米根瘤微生物组调控:氮孢蘑菇接种和吲哚-3-乙酸处理的启示","authors":"Anahí Coniglio, Giovanni Larama, Sofía Nievas, Natalie L. Cale, Verónica Mora, Daniela Torres, Gastón Lopez, Florencia Donadio, Belén Rodriguez, Anelis Marin, Matias Rovere, Patricio Javier Barra, Mark F. Belmonte, Emanuel Maltempi de Souza, Fabricio Cassán","doi":"10.1007/s42729-024-02013-3","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Auxins, especially indole-3-acetic acid (IAA), influences microbial physiology, but their effects on the plant microbiome are underreported. This study aimed to understand the impact of exogenously supplemented IAA or IAA produced by Azospirillum on maize rhizosphere microbiome.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>One-week-old maize seedlings were inoculated with Az39 (A. argentinense’s strain), Az39 + L-Trp (Azospirillum-produced IAA), L-Trp (rhizosphere-produced IAA), and exogenous IAA to study their effects on the maize microbiome. Rhizosphere samples were collected after 14 days for DNA extraction, sequencing via Illumina MiSeq, and bioinformatic analysis were made to explore prokaryotic community composition and predict metabolic functions.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Differences in the Shannon index were observed between Az39 inoculation and exogenous L-Trp application, and between Az39 inoculation and Az39 + L-Trp for phylogeny and observed features. Azospirillum inoculation influences on bacterial structure bacterial structure. Genus Actinospica and Bradyrhizobium were associated with IAA treatment, Rokubacteriales and Puia with L-Trp, and Cupriavidus and Pseudomonas with Az39 + L-Trp. Azospirillum and Sphingobium were linked to Az39 inoculation. We identified fifty microbial taxa following the exogenous application of IAA application and twenty-two with potential rhizosphere IAA production. Nitrogen fixation was the most abundant metabolic function in the prokaryotic rhizosphere.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our results show prokaryotic groups specifically increase in the maize rhizosphere following application of Azospirillum, the IAA produced by Azospirillum, or the rhizosphere community and the exogenous IAA. These groups could be considered specific markers of the IAA activity in the rhizosphere.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":"9 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auxin-Mediated Modulation of Maize Rhizosphere Microbiome: Insights from Azospirillum Inoculation and Indole-3-Acetic Acid Treatment\",\"authors\":\"Anahí Coniglio, Giovanni Larama, Sofía Nievas, Natalie L. Cale, Verónica Mora, Daniela Torres, Gastón Lopez, Florencia Donadio, Belén Rodriguez, Anelis Marin, Matias Rovere, Patricio Javier Barra, Mark F. Belmonte, Emanuel Maltempi de Souza, Fabricio Cassán\",\"doi\":\"10.1007/s42729-024-02013-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>Auxins, especially indole-3-acetic acid (IAA), influences microbial physiology, but their effects on the plant microbiome are underreported. This study aimed to understand the impact of exogenously supplemented IAA or IAA produced by Azospirillum on maize rhizosphere microbiome.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>One-week-old maize seedlings were inoculated with Az39 (A. argentinense’s strain), Az39 + L-Trp (Azospirillum-produced IAA), L-Trp (rhizosphere-produced IAA), and exogenous IAA to study their effects on the maize microbiome. Rhizosphere samples were collected after 14 days for DNA extraction, sequencing via Illumina MiSeq, and bioinformatic analysis were made to explore prokaryotic community composition and predict metabolic functions.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Differences in the Shannon index were observed between Az39 inoculation and exogenous L-Trp application, and between Az39 inoculation and Az39 + L-Trp for phylogeny and observed features. Azospirillum inoculation influences on bacterial structure bacterial structure. Genus Actinospica and Bradyrhizobium were associated with IAA treatment, Rokubacteriales and Puia with L-Trp, and Cupriavidus and Pseudomonas with Az39 + L-Trp. Azospirillum and Sphingobium were linked to Az39 inoculation. We identified fifty microbial taxa following the exogenous application of IAA application and twenty-two with potential rhizosphere IAA production. Nitrogen fixation was the most abundant metabolic function in the prokaryotic rhizosphere.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>Our results show prokaryotic groups specifically increase in the maize rhizosphere following application of Azospirillum, the IAA produced by Azospirillum, or the rhizosphere community and the exogenous IAA. These groups could be considered specific markers of the IAA activity in the rhizosphere.</p>\",\"PeriodicalId\":17042,\"journal\":{\"name\":\"Journal of Soil Science and Plant Nutrition\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil Science and Plant Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s42729-024-02013-3\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-02013-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Auxin-Mediated Modulation of Maize Rhizosphere Microbiome: Insights from Azospirillum Inoculation and Indole-3-Acetic Acid Treatment
Purpose
Auxins, especially indole-3-acetic acid (IAA), influences microbial physiology, but their effects on the plant microbiome are underreported. This study aimed to understand the impact of exogenously supplemented IAA or IAA produced by Azospirillum on maize rhizosphere microbiome.
Methods
One-week-old maize seedlings were inoculated with Az39 (A. argentinense’s strain), Az39 + L-Trp (Azospirillum-produced IAA), L-Trp (rhizosphere-produced IAA), and exogenous IAA to study their effects on the maize microbiome. Rhizosphere samples were collected after 14 days for DNA extraction, sequencing via Illumina MiSeq, and bioinformatic analysis were made to explore prokaryotic community composition and predict metabolic functions.
Results
Differences in the Shannon index were observed between Az39 inoculation and exogenous L-Trp application, and between Az39 inoculation and Az39 + L-Trp for phylogeny and observed features. Azospirillum inoculation influences on bacterial structure bacterial structure. Genus Actinospica and Bradyrhizobium were associated with IAA treatment, Rokubacteriales and Puia with L-Trp, and Cupriavidus and Pseudomonas with Az39 + L-Trp. Azospirillum and Sphingobium were linked to Az39 inoculation. We identified fifty microbial taxa following the exogenous application of IAA application and twenty-two with potential rhizosphere IAA production. Nitrogen fixation was the most abundant metabolic function in the prokaryotic rhizosphere.
Conclusion
Our results show prokaryotic groups specifically increase in the maize rhizosphere following application of Azospirillum, the IAA produced by Azospirillum, or the rhizosphere community and the exogenous IAA. These groups could be considered specific markers of the IAA activity in the rhizosphere.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.