{"title":"以图为基础,对(生物)化学系统进行动态保护性还原","authors":"Marc R. Roussel, Talmon Soares","doi":"10.1007/s00285-024-02138-0","DOIUrl":null,"url":null,"abstract":"<p>Complex dynamical systems are often governed by equations containing many unknown parameters whose precise values may or may not be important for the system’s dynamics. In particular, for chemical and biochemical systems, there may be some reactions or subsystems that are inessential to understanding the bifurcation structure and consequent behavior of a model, such as oscillations, multistationarity and patterning. Due to the size, complexity and parametric uncertainties of many (bio)chemical models, a dynamics-preserving reduction scheme that is able to isolate the necessary contributors to particular dynamical behaviors would be useful. In this contribution, we describe model reduction methods for mass-action (bio)chemical models based on the preservation of instability-generating subnetworks known as critical fragments. These methods focus on structural conditions for instabilities and so are parameter-independent. We apply these results to an existing model for the control of the synthesis of the NO-detoxifying enzyme Hmp in <i>Escherichia coli</i> that displays bistability.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"41 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-based, dynamics-preserving reduction of (bio)chemical systems\",\"authors\":\"Marc R. Roussel, Talmon Soares\",\"doi\":\"10.1007/s00285-024-02138-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Complex dynamical systems are often governed by equations containing many unknown parameters whose precise values may or may not be important for the system’s dynamics. In particular, for chemical and biochemical systems, there may be some reactions or subsystems that are inessential to understanding the bifurcation structure and consequent behavior of a model, such as oscillations, multistationarity and patterning. Due to the size, complexity and parametric uncertainties of many (bio)chemical models, a dynamics-preserving reduction scheme that is able to isolate the necessary contributors to particular dynamical behaviors would be useful. In this contribution, we describe model reduction methods for mass-action (bio)chemical models based on the preservation of instability-generating subnetworks known as critical fragments. These methods focus on structural conditions for instabilities and so are parameter-independent. We apply these results to an existing model for the control of the synthesis of the NO-detoxifying enzyme Hmp in <i>Escherichia coli</i> that displays bistability.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02138-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02138-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Graph-based, dynamics-preserving reduction of (bio)chemical systems
Complex dynamical systems are often governed by equations containing many unknown parameters whose precise values may or may not be important for the system’s dynamics. In particular, for chemical and biochemical systems, there may be some reactions or subsystems that are inessential to understanding the bifurcation structure and consequent behavior of a model, such as oscillations, multistationarity and patterning. Due to the size, complexity and parametric uncertainties of many (bio)chemical models, a dynamics-preserving reduction scheme that is able to isolate the necessary contributors to particular dynamical behaviors would be useful. In this contribution, we describe model reduction methods for mass-action (bio)chemical models based on the preservation of instability-generating subnetworks known as critical fragments. These methods focus on structural conditions for instabilities and so are parameter-independent. We apply these results to an existing model for the control of the synthesis of the NO-detoxifying enzyme Hmp in Escherichia coli that displays bistability.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.