将入侵植物物种(Bidens pilosa L.)转化为同时去除环丙沙星抗生素和结晶紫染料的生物吸附剂

IF 3.5 4区 工程技术 Q3 ENERGY & FUELS
Giang Thanh Tran, Thuy Thi Thanh Nguyen, Dinh Tien Dung Nguyen, Dai Hai Nguyen, Duyen Thi Cam Nguyen, Thuan Van Tran
{"title":"将入侵植物物种(Bidens pilosa L.)转化为同时去除环丙沙星抗生素和结晶紫染料的生物吸附剂","authors":"Giang Thanh Tran, Thuy Thi Thanh Nguyen, Dinh Tien Dung Nguyen, Dai Hai Nguyen, Duyen Thi Cam Nguyen, Thuan Van Tran","doi":"10.1007/s13399-024-06082-3","DOIUrl":null,"url":null,"abstract":"<p>Here, we present the production of carbonaceous bioadsorbent derived from <i>Bidens pilosa</i> L. invasive plant biomass. The bioadsorbent, pyrolyzed at 400 °C, was selected to assess the adsorption performance against ciprofloxacin antibiotic and crystal violet dye from water. This bioadsorbent exhibited a porous structure with a surface area of 4.0 m<sup>2</sup> g<sup>−1</sup> and a point of zero charge of 7.7. To optimize simultaneous removal conditions, a Box-Behnken design and response surface methodology were employed. The model predicted the optimum condition at a dosage of 1.23 g L<sup>−1</sup>, a ciprofloxacin concentration of 12.82 mg L<sup>−1</sup>, a crystal violet concentration of 20.5 mg/L, and pH of 3. Notably, the tested values closely matched the predicted values. Additionally, kinetic and isotherm models were applied, indicating excellent adherence to pseudo-first and second-order kinetics, as well as Langmuir and Freundlich isotherms, respectively. Due to high adsorption capacities, i.e., 31.89 mg/g for ciprofloxacin and 58.42 mg g<sup>−1</sup> for crystal violet of the bioadsorbent, it is proposed that the conversion of <i>Bidens pilosa</i> L. invasive plant biomass into bioadsorbents is both feasible and sustainable for the simultaneous removal of antibiotics and dyes from water.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"42 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversion of invasive plant species (Bidens pilosa L.) into bioadsorbents for simultaneous removal of ciprofloxacin antibiotic and crystal violet dye\",\"authors\":\"Giang Thanh Tran, Thuy Thi Thanh Nguyen, Dinh Tien Dung Nguyen, Dai Hai Nguyen, Duyen Thi Cam Nguyen, Thuan Van Tran\",\"doi\":\"10.1007/s13399-024-06082-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here, we present the production of carbonaceous bioadsorbent derived from <i>Bidens pilosa</i> L. invasive plant biomass. The bioadsorbent, pyrolyzed at 400 °C, was selected to assess the adsorption performance against ciprofloxacin antibiotic and crystal violet dye from water. This bioadsorbent exhibited a porous structure with a surface area of 4.0 m<sup>2</sup> g<sup>−1</sup> and a point of zero charge of 7.7. To optimize simultaneous removal conditions, a Box-Behnken design and response surface methodology were employed. The model predicted the optimum condition at a dosage of 1.23 g L<sup>−1</sup>, a ciprofloxacin concentration of 12.82 mg L<sup>−1</sup>, a crystal violet concentration of 20.5 mg/L, and pH of 3. Notably, the tested values closely matched the predicted values. Additionally, kinetic and isotherm models were applied, indicating excellent adherence to pseudo-first and second-order kinetics, as well as Langmuir and Freundlich isotherms, respectively. Due to high adsorption capacities, i.e., 31.89 mg/g for ciprofloxacin and 58.42 mg g<sup>−1</sup> for crystal violet of the bioadsorbent, it is proposed that the conversion of <i>Bidens pilosa</i> L. invasive plant biomass into bioadsorbents is both feasible and sustainable for the simultaneous removal of antibiotics and dyes from water.</p>\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06082-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06082-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们介绍了从入侵植物 Bidens pilosa L. 生物质中提取的碳质生物吸附剂的生产过程。该生物吸附剂在 400 °C 高温下热解,用于评估其对水中环丙沙星抗生素和结晶紫染料的吸附性能。这种生物吸附剂呈多孔结构,表面积为 4.0 m2 g-1,零电荷点为 7.7。为了优化同时去除的条件,采用了方框-贝肯设计和响应面方法。模型预测的最佳条件为:用量为 1.23 g L-1,环丙沙星浓度为 12.82 mg L-1,结晶紫浓度为 20.5 mg/L,pH 值为 3。此外,还应用了动力学和等温线模型,结果表明它们分别与假一阶和二阶动力学以及 Langmuir 和 Freundlich 等温线非常吻合。由于生物吸附剂对环丙沙星和结晶紫具有较高的吸附容量,分别为 31.89 mg/g 和 58.42 mg g-1,因此建议将 Bidens pilosa L. 侵染植物生物质转化为生物吸附剂,用于同时去除水中的抗生素和染料是可行且可持续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conversion of invasive plant species (Bidens pilosa L.) into bioadsorbents for simultaneous removal of ciprofloxacin antibiotic and crystal violet dye

Conversion of invasive plant species (Bidens pilosa L.) into bioadsorbents for simultaneous removal of ciprofloxacin antibiotic and crystal violet dye

Here, we present the production of carbonaceous bioadsorbent derived from Bidens pilosa L. invasive plant biomass. The bioadsorbent, pyrolyzed at 400 °C, was selected to assess the adsorption performance against ciprofloxacin antibiotic and crystal violet dye from water. This bioadsorbent exhibited a porous structure with a surface area of 4.0 m2 g−1 and a point of zero charge of 7.7. To optimize simultaneous removal conditions, a Box-Behnken design and response surface methodology were employed. The model predicted the optimum condition at a dosage of 1.23 g L−1, a ciprofloxacin concentration of 12.82 mg L−1, a crystal violet concentration of 20.5 mg/L, and pH of 3. Notably, the tested values closely matched the predicted values. Additionally, kinetic and isotherm models were applied, indicating excellent adherence to pseudo-first and second-order kinetics, as well as Langmuir and Freundlich isotherms, respectively. Due to high adsorption capacities, i.e., 31.89 mg/g for ciprofloxacin and 58.42 mg g−1 for crystal violet of the bioadsorbent, it is proposed that the conversion of Bidens pilosa L. invasive plant biomass into bioadsorbents is both feasible and sustainable for the simultaneous removal of antibiotics and dyes from water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomass Conversion and Biorefinery
Biomass Conversion and Biorefinery Energy-Renewable Energy, Sustainability and the Environment
CiteScore
7.00
自引率
15.00%
发文量
1358
期刊介绍: Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信