乙烯基硅烷处理的山茶果编织纤维和青铜填料增韧聚酯复合材料的特性分析

IF 3.5 4区 工程技术 Q3 ENERGY & FUELS
Praveen Kumar Balguri, A. Latha, Lakhvinder Kaur, Rajesh Verma, D. Sendil Kumar, S. Ramasree, Angajala Rama Krishna, Manzoore Elahi M. Soudagar, N Nagabhooshanam
{"title":"乙烯基硅烷处理的山茶果编织纤维和青铜填料增韧聚酯复合材料的特性分析","authors":"Praveen Kumar Balguri, A. Latha, Lakhvinder Kaur, Rajesh Verma, D. Sendil Kumar, S. Ramasree, Angajala Rama Krishna, Manzoore Elahi M. Soudagar, N Nagabhooshanam","doi":"10.1007/s13399-024-06088-x","DOIUrl":null,"url":null,"abstract":"<p>Global warming and climate change condition are prevailing due to over exploitations of natural resources like fossil fuels, heavy metals, and dumping of wastages in open space. To bring solution to these less dense composite materials using waste biomass is now researched widely by scientists under various applications. The mechanical, tribological, wear, water absorption, and thermal conductivity properties of composite materials reinforced with bronze nanoparticles and areca fiber coated with vinyl silane are investigated in this research work. The novelty of this research study is to investigate how the composite’s characteristics were affected by the vinyl silane–treated bronze nanoparticle. Using a hand layup technique, the fabrication was cured for 24 h at ambient temperature and then post-cured at 120 °C. The AB2 (Areca fiber of 40 vol.%, Bronze nanoparticle of 3 vol.%) composite demonstrated stronger mechanical properties, including a tensile strength of 37.2%, a flexural strength of 22.4%, and an izod impact strength of 36.6% when compared to fiber- and matrix-reinforced base composite AB0 (areca fiber 40 vol.%, resin 60 vol.%, bronze nanoparticle 0 vol.%). In contrast, the AB3 composite displayed remarkable hardness at 84 Shore-D, outstanding wear resistance at 0.011 mm<sup>3</sup>/Nm, superior thermal conductivity at 0.212 W/mK, and excellent hydrophobicity at 0.12%. Further, when compared to the thermal conductivity of AB3 composite shows 34.2% higher than the thermal conductivity of base composite AB0. Similar such increase in values is attained in other composites compared to AB0 composite. Furthermore, vinyl silane–treated bronze nanoparticles are present in greater volume fractions in AB2 and AB3, which increase reinforcement inside the composite matrix and improve mechanical characteristics. The SEM (scanning electron microscopy) results corroborate that the vinyl silane treatment improved the bond strength of the fiber, filler, and resin. The reinforcement of vinyl silane–treated metallic nanoparticle and natural fiber reinforcement shows better mechanical, wear resistance, and thermal stability property which could be utilized in areas such as automotive, aerospace, defense, and structural applications.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"4 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of vinyl silane–treated areca nut woven fiber and bronze filler toughened polyester composite\",\"authors\":\"Praveen Kumar Balguri, A. Latha, Lakhvinder Kaur, Rajesh Verma, D. Sendil Kumar, S. Ramasree, Angajala Rama Krishna, Manzoore Elahi M. Soudagar, N Nagabhooshanam\",\"doi\":\"10.1007/s13399-024-06088-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global warming and climate change condition are prevailing due to over exploitations of natural resources like fossil fuels, heavy metals, and dumping of wastages in open space. To bring solution to these less dense composite materials using waste biomass is now researched widely by scientists under various applications. The mechanical, tribological, wear, water absorption, and thermal conductivity properties of composite materials reinforced with bronze nanoparticles and areca fiber coated with vinyl silane are investigated in this research work. The novelty of this research study is to investigate how the composite’s characteristics were affected by the vinyl silane–treated bronze nanoparticle. Using a hand layup technique, the fabrication was cured for 24 h at ambient temperature and then post-cured at 120 °C. The AB2 (Areca fiber of 40 vol.%, Bronze nanoparticle of 3 vol.%) composite demonstrated stronger mechanical properties, including a tensile strength of 37.2%, a flexural strength of 22.4%, and an izod impact strength of 36.6% when compared to fiber- and matrix-reinforced base composite AB0 (areca fiber 40 vol.%, resin 60 vol.%, bronze nanoparticle 0 vol.%). In contrast, the AB3 composite displayed remarkable hardness at 84 Shore-D, outstanding wear resistance at 0.011 mm<sup>3</sup>/Nm, superior thermal conductivity at 0.212 W/mK, and excellent hydrophobicity at 0.12%. Further, when compared to the thermal conductivity of AB3 composite shows 34.2% higher than the thermal conductivity of base composite AB0. Similar such increase in values is attained in other composites compared to AB0 composite. Furthermore, vinyl silane–treated bronze nanoparticles are present in greater volume fractions in AB2 and AB3, which increase reinforcement inside the composite matrix and improve mechanical characteristics. The SEM (scanning electron microscopy) results corroborate that the vinyl silane treatment improved the bond strength of the fiber, filler, and resin. The reinforcement of vinyl silane–treated metallic nanoparticle and natural fiber reinforcement shows better mechanical, wear resistance, and thermal stability property which could be utilized in areas such as automotive, aerospace, defense, and structural applications.</p>\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06088-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06088-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

由于过度开采化石燃料、重金属等自然资源以及在空地上倾倒废弃物,导致全球变暖和气候变化。为了解决这些问题,科学家们正在各种应用领域广泛研究使用废弃生物质的低密度复合材料。在这项研究工作中,研究了用青铜纳米颗粒和涂有乙烯基硅烷的紫穗槐纤维增强的复合材料的机械、摩擦、磨损、吸水和导热性能。这项研究的新颖之处在于调查了经乙烯基硅烷处理的纳米青铜颗粒如何影响复合材料的特性。采用手糊技术,在环境温度下固化 24 小时,然后在 120 °C 下进行后固化。与纤维和基质增强基复合材料 AB0(阿雷卡纤维 40%,树脂 60%,纳米青铜颗粒 0%)相比,AB2(阿雷卡纤维 40%,纳米青铜颗粒 3%)复合材料具有更强的机械性能,其中拉伸强度为 37.2%,弯曲强度为 22.4%,Izod 冲击强度为 36.6%。相比之下,AB3 复合材料的硬度为 84 Shore-D,耐磨性为 0.011 mm3/Nm,导热性为 0.212 W/mK,疏水性为 0.12%。此外,AB3 复合材料的导热系数比 AB0 基础复合材料的导热系数高出 34.2%。与 AB0 复合材料相比,其他复合材料的导热系数也有类似的提高。此外,在 AB2 和 AB3 中,乙烯基硅烷处理过的青铜纳米颗粒的体积分数更大,从而增加了复合材料基体内部的加固作用,改善了机械特性。扫描电子显微镜(SEM)结果证实,乙烯基硅烷处理提高了纤维、填料和树脂的结合强度。经乙烯基硅烷处理的金属纳米粒子和天然纤维增强材料具有更好的机械性能、耐磨性能和热稳定性,可用于汽车、航空航天、国防和结构等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterization of vinyl silane–treated areca nut woven fiber and bronze filler toughened polyester composite

Characterization of vinyl silane–treated areca nut woven fiber and bronze filler toughened polyester composite

Global warming and climate change condition are prevailing due to over exploitations of natural resources like fossil fuels, heavy metals, and dumping of wastages in open space. To bring solution to these less dense composite materials using waste biomass is now researched widely by scientists under various applications. The mechanical, tribological, wear, water absorption, and thermal conductivity properties of composite materials reinforced with bronze nanoparticles and areca fiber coated with vinyl silane are investigated in this research work. The novelty of this research study is to investigate how the composite’s characteristics were affected by the vinyl silane–treated bronze nanoparticle. Using a hand layup technique, the fabrication was cured for 24 h at ambient temperature and then post-cured at 120 °C. The AB2 (Areca fiber of 40 vol.%, Bronze nanoparticle of 3 vol.%) composite demonstrated stronger mechanical properties, including a tensile strength of 37.2%, a flexural strength of 22.4%, and an izod impact strength of 36.6% when compared to fiber- and matrix-reinforced base composite AB0 (areca fiber 40 vol.%, resin 60 vol.%, bronze nanoparticle 0 vol.%). In contrast, the AB3 composite displayed remarkable hardness at 84 Shore-D, outstanding wear resistance at 0.011 mm3/Nm, superior thermal conductivity at 0.212 W/mK, and excellent hydrophobicity at 0.12%. Further, when compared to the thermal conductivity of AB3 composite shows 34.2% higher than the thermal conductivity of base composite AB0. Similar such increase in values is attained in other composites compared to AB0 composite. Furthermore, vinyl silane–treated bronze nanoparticles are present in greater volume fractions in AB2 and AB3, which increase reinforcement inside the composite matrix and improve mechanical characteristics. The SEM (scanning electron microscopy) results corroborate that the vinyl silane treatment improved the bond strength of the fiber, filler, and resin. The reinforcement of vinyl silane–treated metallic nanoparticle and natural fiber reinforcement shows better mechanical, wear resistance, and thermal stability property which could be utilized in areas such as automotive, aerospace, defense, and structural applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomass Conversion and Biorefinery
Biomass Conversion and Biorefinery Energy-Renewable Energy, Sustainability and the Environment
CiteScore
7.00
自引率
15.00%
发文量
1358
期刊介绍: Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信