Gokul Kannan, Rajasekaran Thangaraju, Supakij Suttiruengwong, Vigneshwaran Shanmugam, Sanjay Mavinkere Rangappa, K. R. Sumesh, Rittin Abraham Kurien, Suchart Siengchin
{"title":"钻孔工艺参数对香蕉纤维和椰壳填料增强的农产废料基聚合物复合材料的影响","authors":"Gokul Kannan, Rajasekaran Thangaraju, Supakij Suttiruengwong, Vigneshwaran Shanmugam, Sanjay Mavinkere Rangappa, K. R. Sumesh, Rittin Abraham Kurien, Suchart Siengchin","doi":"10.1007/s13399-024-06140-w","DOIUrl":null,"url":null,"abstract":"<p>The present study effectively employed agro-wastes in the fabrication of novel hybrid polymer composites, incorporating banana fibers (BA) and coconut shell (CS) fillers. The machining performance of the hybrid composites was assessed in relation to the effects of drilling process parameters. CNC drilling was conducted under the following conditions: coconut filler content (1%, 3%, and 5% by volume), feed rates (50, 75, and 100 mm/min), and spindle speeds (1000, 1500, and 2000 rpm). A drilling experiment was carried out using a Taguchi L<sub>27</sub> orthogonal array, and the responses, including thrust force, peel-up delamination, and push-out delamination, were analyzed in detail. The minimum thrust force was achieved with 5 vol.% coconut shell filler, a feed rate of 50 mm/min, and a spindle speed of 2000 rpm. The lowest peel-up delamination was observed with 1 vol.% coconut shell filler, a spindle speed of 1500 rpm, and a feed rate of 100 mm/min, while the minimum push-out delamination occurred under the same filler content, a spindle speed of 1500 rpm, and a feed rate of 75 mm/min. Fiber/matrix debonding, fractured fibers, and matrix cracks were identified as critical failure mechanisms through scanning electron microscopy.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"8 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of drilling process parameters on agro-waste-based polymer composites reinforced with banana fiber and coconut shell filler\",\"authors\":\"Gokul Kannan, Rajasekaran Thangaraju, Supakij Suttiruengwong, Vigneshwaran Shanmugam, Sanjay Mavinkere Rangappa, K. R. Sumesh, Rittin Abraham Kurien, Suchart Siengchin\",\"doi\":\"10.1007/s13399-024-06140-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study effectively employed agro-wastes in the fabrication of novel hybrid polymer composites, incorporating banana fibers (BA) and coconut shell (CS) fillers. The machining performance of the hybrid composites was assessed in relation to the effects of drilling process parameters. CNC drilling was conducted under the following conditions: coconut filler content (1%, 3%, and 5% by volume), feed rates (50, 75, and 100 mm/min), and spindle speeds (1000, 1500, and 2000 rpm). A drilling experiment was carried out using a Taguchi L<sub>27</sub> orthogonal array, and the responses, including thrust force, peel-up delamination, and push-out delamination, were analyzed in detail. The minimum thrust force was achieved with 5 vol.% coconut shell filler, a feed rate of 50 mm/min, and a spindle speed of 2000 rpm. The lowest peel-up delamination was observed with 1 vol.% coconut shell filler, a spindle speed of 1500 rpm, and a feed rate of 100 mm/min, while the minimum push-out delamination occurred under the same filler content, a spindle speed of 1500 rpm, and a feed rate of 75 mm/min. Fiber/matrix debonding, fractured fibers, and matrix cracks were identified as critical failure mechanisms through scanning electron microscopy.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06140-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06140-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effect of drilling process parameters on agro-waste-based polymer composites reinforced with banana fiber and coconut shell filler
The present study effectively employed agro-wastes in the fabrication of novel hybrid polymer composites, incorporating banana fibers (BA) and coconut shell (CS) fillers. The machining performance of the hybrid composites was assessed in relation to the effects of drilling process parameters. CNC drilling was conducted under the following conditions: coconut filler content (1%, 3%, and 5% by volume), feed rates (50, 75, and 100 mm/min), and spindle speeds (1000, 1500, and 2000 rpm). A drilling experiment was carried out using a Taguchi L27 orthogonal array, and the responses, including thrust force, peel-up delamination, and push-out delamination, were analyzed in detail. The minimum thrust force was achieved with 5 vol.% coconut shell filler, a feed rate of 50 mm/min, and a spindle speed of 2000 rpm. The lowest peel-up delamination was observed with 1 vol.% coconut shell filler, a spindle speed of 1500 rpm, and a feed rate of 100 mm/min, while the minimum push-out delamination occurred under the same filler content, a spindle speed of 1500 rpm, and a feed rate of 75 mm/min. Fiber/matrix debonding, fractured fibers, and matrix cracks were identified as critical failure mechanisms through scanning electron microscopy.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.