Jafrey Daniel James Dhilip, Vijay Raghunathan, Ramesh Mohan, Vinod Ayyappan, Sanjay Mavinkere Rangappa, Suchart Siengchin
{"title":"用于轻质应用的经超声波处理的硅烷处理山竹纤维增强环氧树脂复合材料的机械性能和可燃性能","authors":"Jafrey Daniel James Dhilip, Vijay Raghunathan, Ramesh Mohan, Vinod Ayyappan, Sanjay Mavinkere Rangappa, Suchart Siengchin","doi":"10.1007/s13399-024-06124-w","DOIUrl":null,"url":null,"abstract":"<p>Synthetic fiber-based polymers constitute a significant pollution source; however, their elimination is challenging due to their extensive applications. The properties of the natural fibers can be enhanced through chemical treatment. In this study, areca fibers, subjected to ultrasonic modification with silane, were utilized in various stacking sequences, and banana fibers were used without modification. The tri-layer epoxy composites were developed following four stacking sequences using a hand layup process. The mechanical, flammability, and morphological characteristics of the developed composites were analyzed. Fourier transform infrared spectroscopy results indicate the modification of fibers after silane treatment. Morphological investigations using scanning electron microscope revealed an excellent interfacial bond between the chemically treated fibers and the matrix, leading to a 15% improvement in ultimate tensile strength, 20% in hardness, 34% in ultimate flexural strength, and 18% in impact properties. This signifies the impact of surface modification on areca fibers and stacking sequence. The results showed that fiber-matrix interaction played a crucial role in controlling the performance characteristics of the developed composites.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"31 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and flammability properties of ultrasonically processed silane-treated areca-banana fiber-reinforced epoxy composites for lightweight applications\",\"authors\":\"Jafrey Daniel James Dhilip, Vijay Raghunathan, Ramesh Mohan, Vinod Ayyappan, Sanjay Mavinkere Rangappa, Suchart Siengchin\",\"doi\":\"10.1007/s13399-024-06124-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synthetic fiber-based polymers constitute a significant pollution source; however, their elimination is challenging due to their extensive applications. The properties of the natural fibers can be enhanced through chemical treatment. In this study, areca fibers, subjected to ultrasonic modification with silane, were utilized in various stacking sequences, and banana fibers were used without modification. The tri-layer epoxy composites were developed following four stacking sequences using a hand layup process. The mechanical, flammability, and morphological characteristics of the developed composites were analyzed. Fourier transform infrared spectroscopy results indicate the modification of fibers after silane treatment. Morphological investigations using scanning electron microscope revealed an excellent interfacial bond between the chemically treated fibers and the matrix, leading to a 15% improvement in ultimate tensile strength, 20% in hardness, 34% in ultimate flexural strength, and 18% in impact properties. This signifies the impact of surface modification on areca fibers and stacking sequence. The results showed that fiber-matrix interaction played a crucial role in controlling the performance characteristics of the developed composites.</p>\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06124-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06124-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Mechanical and flammability properties of ultrasonically processed silane-treated areca-banana fiber-reinforced epoxy composites for lightweight applications
Synthetic fiber-based polymers constitute a significant pollution source; however, their elimination is challenging due to their extensive applications. The properties of the natural fibers can be enhanced through chemical treatment. In this study, areca fibers, subjected to ultrasonic modification with silane, were utilized in various stacking sequences, and banana fibers were used without modification. The tri-layer epoxy composites were developed following four stacking sequences using a hand layup process. The mechanical, flammability, and morphological characteristics of the developed composites were analyzed. Fourier transform infrared spectroscopy results indicate the modification of fibers after silane treatment. Morphological investigations using scanning electron microscope revealed an excellent interfacial bond between the chemically treated fibers and the matrix, leading to a 15% improvement in ultimate tensile strength, 20% in hardness, 34% in ultimate flexural strength, and 18% in impact properties. This signifies the impact of surface modification on areca fibers and stacking sequence. The results showed that fiber-matrix interaction played a crucial role in controlling the performance characteristics of the developed composites.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.