{"title":"用于钠离子电池的层状氧化物阴极材料:微型综述","authors":"Liang Gao, Kai-Xue Wang","doi":"10.1021/acs.energyfuels.4c02769","DOIUrl":null,"url":null,"abstract":"Layered transition metal oxides (LTMOs) are considered promising cathode materials for sodium-ion batteries (SIBs) due to their high specific capacity and low cost, making them promising candidates for commercialization. This review focuses on the current state of research on the structure and performance of LTMOs beginning with an explanation of the structure characteristics of P-phase and O-phase cathode materials. Next, to address the issues faced by LTMOs, including irreversible phase transitions during charge–discharge processes, the imbalance between energy density and cycling stability, and poor air stability, three modification strategies, such as element doping, surface coating, and structure design are summarized. Additionally, research on the complementary manganese and oxygen redox chemistry was also elucidated. Finally, an outlook on the development trends and application prospects of LTMOs is proposed, aiming to promote further fundamental research and practical application of SIBs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered Oxide Cathode Materials for Sodium-Ion Batteries: A Mini-Review\",\"authors\":\"Liang Gao, Kai-Xue Wang\",\"doi\":\"10.1021/acs.energyfuels.4c02769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layered transition metal oxides (LTMOs) are considered promising cathode materials for sodium-ion batteries (SIBs) due to their high specific capacity and low cost, making them promising candidates for commercialization. This review focuses on the current state of research on the structure and performance of LTMOs beginning with an explanation of the structure characteristics of P-phase and O-phase cathode materials. Next, to address the issues faced by LTMOs, including irreversible phase transitions during charge–discharge processes, the imbalance between energy density and cycling stability, and poor air stability, three modification strategies, such as element doping, surface coating, and structure design are summarized. Additionally, research on the complementary manganese and oxygen redox chemistry was also elucidated. Finally, an outlook on the development trends and application prospects of LTMOs is proposed, aiming to promote further fundamental research and practical application of SIBs.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.energyfuels.4c02769\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.energyfuels.4c02769","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
层状过渡金属氧化物(LTMOs)因其高比容量和低成本而被认为是钠离子电池(SIBs)的理想阴极材料,因此很有希望实现商业化。本综述重点介绍 LTMOs 结构和性能的研究现状,首先解释 P 相和 O 相阴极材料的结构特征。接下来,针对 LTMOs 面临的问题,包括充放电过程中的不可逆相变、能量密度与循环稳定性之间的不平衡以及空气稳定性差等,总结了三种改性策略,如元素掺杂、表面涂层和结构设计。此外,还阐明了锰和氧氧化还原化学互补的研究。最后,对 LTMOs 的发展趋势和应用前景进行了展望,旨在进一步推动 SIB 的基础研究和实际应用。
Layered Oxide Cathode Materials for Sodium-Ion Batteries: A Mini-Review
Layered transition metal oxides (LTMOs) are considered promising cathode materials for sodium-ion batteries (SIBs) due to their high specific capacity and low cost, making them promising candidates for commercialization. This review focuses on the current state of research on the structure and performance of LTMOs beginning with an explanation of the structure characteristics of P-phase and O-phase cathode materials. Next, to address the issues faced by LTMOs, including irreversible phase transitions during charge–discharge processes, the imbalance between energy density and cycling stability, and poor air stability, three modification strategies, such as element doping, surface coating, and structure design are summarized. Additionally, research on the complementary manganese and oxygen redox chemistry was also elucidated. Finally, an outlook on the development trends and application prospects of LTMOs is proposed, aiming to promote further fundamental research and practical application of SIBs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.