Anett Jannasch, Silke Tulok, Chukwuebuka William Okafornta, Thomas Kugel, Michele Bortolomeazzi, Tom Boissonnet, Christian Schmidt, Andy Vogelsang, Claudia Dittfeld, Sems‐Malte Tugtekin, Klaus Matschke, Leocadia Paliulis, Carola Thomas, Dirk Lindemann, Gunar Fabig, Thomas Müller‐Reichert
{"title":"为生物图像数据建立机构 OMERO 环境:机构工作人员和用户的观点","authors":"Anett Jannasch, Silke Tulok, Chukwuebuka William Okafornta, Thomas Kugel, Michele Bortolomeazzi, Tom Boissonnet, Christian Schmidt, Andy Vogelsang, Claudia Dittfeld, Sems‐Malte Tugtekin, Klaus Matschke, Leocadia Paliulis, Carola Thomas, Dirk Lindemann, Gunar Fabig, Thomas Müller‐Reichert","doi":"10.1111/jmi.13360","DOIUrl":null,"url":null,"abstract":"Modern bioimaging core facilities at research institutions are essential for managing and maintaining high‐end instruments, providing training and support for researchers in experimental design, image acquisition and data analysis. An important task for these facilities is the professional management of complex multidimensional bioimaging data, which are often produced in large quantity and very different file formats. This article details the process that led to successfully implementing the OME Remote Objects system (OMERO) for bioimage‐specific research data management (RDM) at the Core Facility Cellular Imaging (CFCI) at the Technische Universität Dresden (TU Dresden). Ensuring compliance with the FAIR (findable, accessible, interoperable, reusable) principles, we outline here the challenges that we faced in adapting data handling and storage to a new RDM system. These challenges included the introduction of a standardised group‐specific naming convention, metadata curation with tagging and Key–Value pairs, and integration of existing image processing workflows. By sharing our experiences, this article aims to provide insights and recommendations for both individual researchers and educational institutions intending to implement OMERO as a management system for bioimaging data. We showcase how tailored decisions and structured approaches lead to successful outcomes in RDM practices.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Setting up an institutional OMERO environment for bioimage data: Perspectives from both facility staff and users\",\"authors\":\"Anett Jannasch, Silke Tulok, Chukwuebuka William Okafornta, Thomas Kugel, Michele Bortolomeazzi, Tom Boissonnet, Christian Schmidt, Andy Vogelsang, Claudia Dittfeld, Sems‐Malte Tugtekin, Klaus Matschke, Leocadia Paliulis, Carola Thomas, Dirk Lindemann, Gunar Fabig, Thomas Müller‐Reichert\",\"doi\":\"10.1111/jmi.13360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern bioimaging core facilities at research institutions are essential for managing and maintaining high‐end instruments, providing training and support for researchers in experimental design, image acquisition and data analysis. An important task for these facilities is the professional management of complex multidimensional bioimaging data, which are often produced in large quantity and very different file formats. This article details the process that led to successfully implementing the OME Remote Objects system (OMERO) for bioimage‐specific research data management (RDM) at the Core Facility Cellular Imaging (CFCI) at the Technische Universität Dresden (TU Dresden). Ensuring compliance with the FAIR (findable, accessible, interoperable, reusable) principles, we outline here the challenges that we faced in adapting data handling and storage to a new RDM system. These challenges included the introduction of a standardised group‐specific naming convention, metadata curation with tagging and Key–Value pairs, and integration of existing image processing workflows. By sharing our experiences, this article aims to provide insights and recommendations for both individual researchers and educational institutions intending to implement OMERO as a management system for bioimaging data. We showcase how tailored decisions and structured approaches lead to successful outcomes in RDM practices.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.13360\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13360","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Setting up an institutional OMERO environment for bioimage data: Perspectives from both facility staff and users
Modern bioimaging core facilities at research institutions are essential for managing and maintaining high‐end instruments, providing training and support for researchers in experimental design, image acquisition and data analysis. An important task for these facilities is the professional management of complex multidimensional bioimaging data, which are often produced in large quantity and very different file formats. This article details the process that led to successfully implementing the OME Remote Objects system (OMERO) for bioimage‐specific research data management (RDM) at the Core Facility Cellular Imaging (CFCI) at the Technische Universität Dresden (TU Dresden). Ensuring compliance with the FAIR (findable, accessible, interoperable, reusable) principles, we outline here the challenges that we faced in adapting data handling and storage to a new RDM system. These challenges included the introduction of a standardised group‐specific naming convention, metadata curation with tagging and Key–Value pairs, and integration of existing image processing workflows. By sharing our experiences, this article aims to provide insights and recommendations for both individual researchers and educational institutions intending to implement OMERO as a management system for bioimaging data. We showcase how tailored decisions and structured approaches lead to successful outcomes in RDM practices.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.