Yang Liu,Siew Ling Ong,Kristene Gedye,Mauro Truglio,Sujay Prabakar
{"title":"幕后工作羊皮可持续脱毛过程中细菌群落的元基因组分析。","authors":"Yang Liu,Siew Ling Ong,Kristene Gedye,Mauro Truglio,Sujay Prabakar","doi":"10.1093/jambio/lxae244","DOIUrl":null,"url":null,"abstract":"AIMS\r\nThe leather industry is embracing eco-friendly technologies for both regulatory compliance and sustainable growth. While enzymatic depilation provides a greener alternative to traditional beamhouse methods, its complexity often leads to higher costs. To address this, we examined the performance of sheepskins' native bacterial flora in acetic acid conditions with low environmental impact.\r\n\r\nMETHODS AND RESULTS\r\nUtilizing metagenomic techniques, we analyzed the bacterial community dynamics during the depilation process. This investigation revealed a notable increase in microbial diversity and richness in acetic acid treatments compared to water treatments. At the class level, a post-processing decrease in Gammaproteobacteria dominance was observed, while Actinomycetia numbers surged in the acetic acid group. In contrast, the water group showed an increase in Bacteroidia. Order-level analysis indicated reductions in Pseudomonadales and increases in Actinomycetales with acetic acid treatment, whereas Flavobacteriales was more prevalent in water-treated liquors. At the family level, Moraxellaceae decreased and Micrococcaceae increased in the acetic acid group, in contrast to the marked rise of Weeksellaceae in the water group. Temporal analyses further highlighted the evolving bacterial landscapes under different treatments. Moreover, acetic acid treatment fostered a stable microbial community, beneficial for sustainable leather processing. Functional pathways were predicted using PICRUSt2. It showed that significantly enriched degradation pathways in the water group were less abundant in the acetic acid group, potentially preventing substrate matrix damage during depilation.\r\n\r\nCONCLUSIONS\r\nThe study underscores the transformative potential of acetic acid for the leather industry, offering a pathway to reduce pollution while maintaining economic viability. By enhancing our understanding of microbial interactions during depilation, this study opens avenues for refining these eco-friendly techniques. Our findings advocate for a shift towards greener depilation methods and contribute to the broader dialogue on sustainable manufacturing practices, emphasizing the importance of leveraging indigenous microbial communities for environmental and economic gains.","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":"34 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behind the Scenes: Metagenomic Analysis of Bacterial Communities in Sustainable Depilation of Sheepskin.\",\"authors\":\"Yang Liu,Siew Ling Ong,Kristene Gedye,Mauro Truglio,Sujay Prabakar\",\"doi\":\"10.1093/jambio/lxae244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AIMS\\r\\nThe leather industry is embracing eco-friendly technologies for both regulatory compliance and sustainable growth. While enzymatic depilation provides a greener alternative to traditional beamhouse methods, its complexity often leads to higher costs. To address this, we examined the performance of sheepskins' native bacterial flora in acetic acid conditions with low environmental impact.\\r\\n\\r\\nMETHODS AND RESULTS\\r\\nUtilizing metagenomic techniques, we analyzed the bacterial community dynamics during the depilation process. This investigation revealed a notable increase in microbial diversity and richness in acetic acid treatments compared to water treatments. At the class level, a post-processing decrease in Gammaproteobacteria dominance was observed, while Actinomycetia numbers surged in the acetic acid group. In contrast, the water group showed an increase in Bacteroidia. Order-level analysis indicated reductions in Pseudomonadales and increases in Actinomycetales with acetic acid treatment, whereas Flavobacteriales was more prevalent in water-treated liquors. At the family level, Moraxellaceae decreased and Micrococcaceae increased in the acetic acid group, in contrast to the marked rise of Weeksellaceae in the water group. Temporal analyses further highlighted the evolving bacterial landscapes under different treatments. Moreover, acetic acid treatment fostered a stable microbial community, beneficial for sustainable leather processing. Functional pathways were predicted using PICRUSt2. It showed that significantly enriched degradation pathways in the water group were less abundant in the acetic acid group, potentially preventing substrate matrix damage during depilation.\\r\\n\\r\\nCONCLUSIONS\\r\\nThe study underscores the transformative potential of acetic acid for the leather industry, offering a pathway to reduce pollution while maintaining economic viability. By enhancing our understanding of microbial interactions during depilation, this study opens avenues for refining these eco-friendly techniques. Our findings advocate for a shift towards greener depilation methods and contribute to the broader dialogue on sustainable manufacturing practices, emphasizing the importance of leveraging indigenous microbial communities for environmental and economic gains.\",\"PeriodicalId\":15036,\"journal\":{\"name\":\"Journal of Applied Microbiology\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jambio/lxae244\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae244","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Behind the Scenes: Metagenomic Analysis of Bacterial Communities in Sustainable Depilation of Sheepskin.
AIMS
The leather industry is embracing eco-friendly technologies for both regulatory compliance and sustainable growth. While enzymatic depilation provides a greener alternative to traditional beamhouse methods, its complexity often leads to higher costs. To address this, we examined the performance of sheepskins' native bacterial flora in acetic acid conditions with low environmental impact.
METHODS AND RESULTS
Utilizing metagenomic techniques, we analyzed the bacterial community dynamics during the depilation process. This investigation revealed a notable increase in microbial diversity and richness in acetic acid treatments compared to water treatments. At the class level, a post-processing decrease in Gammaproteobacteria dominance was observed, while Actinomycetia numbers surged in the acetic acid group. In contrast, the water group showed an increase in Bacteroidia. Order-level analysis indicated reductions in Pseudomonadales and increases in Actinomycetales with acetic acid treatment, whereas Flavobacteriales was more prevalent in water-treated liquors. At the family level, Moraxellaceae decreased and Micrococcaceae increased in the acetic acid group, in contrast to the marked rise of Weeksellaceae in the water group. Temporal analyses further highlighted the evolving bacterial landscapes under different treatments. Moreover, acetic acid treatment fostered a stable microbial community, beneficial for sustainable leather processing. Functional pathways were predicted using PICRUSt2. It showed that significantly enriched degradation pathways in the water group were less abundant in the acetic acid group, potentially preventing substrate matrix damage during depilation.
CONCLUSIONS
The study underscores the transformative potential of acetic acid for the leather industry, offering a pathway to reduce pollution while maintaining economic viability. By enhancing our understanding of microbial interactions during depilation, this study opens avenues for refining these eco-friendly techniques. Our findings advocate for a shift towards greener depilation methods and contribute to the broader dialogue on sustainable manufacturing practices, emphasizing the importance of leveraging indigenous microbial communities for environmental and economic gains.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.