利用微 ARPES 实现超导间隙空间不均匀性的可视化

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yudai Miyai, Shigeyuki Ishida, Kenichi Ozawa, Yoshiyuki Yoshida, Hiroshi Eisaki, Kenya Shimada, Hideaki Iwasawa
{"title":"利用微 ARPES 实现超导间隙空间不均匀性的可视化","authors":"Yudai Miyai, Shigeyuki Ishida, Kenichi Ozawa, Yoshiyuki Yoshida, Hiroshi Eisaki, Kenya Shimada, Hideaki Iwasawa","doi":"10.1080/14686996.2024.2379238","DOIUrl":null,"url":null,"abstract":"Electronic inhomogeneity arises ubiquitously as a consequence of adjacent and/or competing multiple phases or orders in strongly correlated electron systems. Gap inhomogeneity in high-<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/23348068-a604-405d-a0ca-e3a990eb8f15/tsta_a_2379238_ilm0001.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mi mathvariant=\"italic\"&gt;Tc&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.206em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.014em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1001.01em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Math-italic;\">T<span style=\"font-family: MathJax_Math-italic;\">c</span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"italic\">Tc</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mi mathvariant=\"italic\">Tc</mi></mrow></math></script></span> cuprate superconductors has been widely observed using scanning tunneling microscopy/spectroscopy. However, it has yet to be evaluated by angle-resolved photoemission spectroscopy (ARPES) due to the difficulty in achieving both high energy and spatial resolutions. Here, we employ high-resolution spatially-resolved ARPES with a micrometric beam (micro-ARPES) to reveal the spatial dependence of the antinodal electronic states in optimally-doped Bi<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/a0f62796-003e-4ca4-bc8a-7da638fce1e4/tsta_a_2379238_ilm0002.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.58em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Main;\">2</span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mn>2</mn></mrow></math></script></span>Sr<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/313e6073-4d1d-46ff-b9cf-e9fd40c90a91/tsta_a_2379238_ilm0003.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.58em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Main;\">2</span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mn>2</mn></mrow></math></script></span>CaCu<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/3a29c068-90b3-452f-adf0-e790821bab83/tsta_a_2379238_ilm0004.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.58em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Main;\">2</span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mn>2</mn></mrow></math></script></span>O<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/63499a7c-13d6-4d30-87d5-8e8ef7e0c5f3/tsta_a_2379238_ilm0005.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi mathvariant=\"italic\"&gt;&amp;#x3B4;&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.651em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.217em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.495em, 1002.22em, 2.603em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span><span style=\"font-family: MathJax_Main;\">8</span><span style=\"font-family: MathJax_Main; padding-left: 0.243em;\">+</span><span style=\"font-family: MathJax_Math-italic; padding-left: 0.243em;\">δ<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.002em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.168em; border-left: 0px solid; width: 0px; height: 1.082em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\"italic\">δ</mi></mrow></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\"italic\">δ</mi></mrow></mrow></math></script></span>. Detailed spectral lineshape analysis was extended to the spatial mapping dataset, enabling the identification of the spatial inhomogeneity of the superconducting gap and single-particle scattering rate at the micro-scale. Moreover, these physical parameters and their correlations were statistically evaluated. Our results suggest that high-resolution spatially-resolved ARPES holds promise for facilitating a data-driven approach to unraveling complexity and uncovering key parameters for the formulation of various physical properties of materials.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"19 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of spatial inhomogeneity in the superconducting gap using micro-ARPES\",\"authors\":\"Yudai Miyai, Shigeyuki Ishida, Kenichi Ozawa, Yoshiyuki Yoshida, Hiroshi Eisaki, Kenya Shimada, Hideaki Iwasawa\",\"doi\":\"10.1080/14686996.2024.2379238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic inhomogeneity arises ubiquitously as a consequence of adjacent and/or competing multiple phases or orders in strongly correlated electron systems. Gap inhomogeneity in high-<span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\":\\\"image\\\",\\\"src\\\":\\\"/cms/asset/23348068-a604-405d-a0ca-e3a990eb8f15/tsta_a_2379238_ilm0001.gif\\\"}' src=\\\"//:0\\\"/></span><span><span style=\\\"color: inherit; display: none;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mi mathvariant=\\\"italic\\\"&gt;Tc&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 1.206em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 1.014em; height: 0px; font-size: 118%;\\\"><span style=\\\"position: absolute; clip: rect(1.543em, 1001.01em, 2.506em, -999.998em); top: -2.357em; left: 0em;\\\"><span><span><span style=\\\"font-family: MathJax_Math-italic;\\\">T<span style=\\\"font-family: MathJax_Math-italic;\\\">c</span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.362em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"italic\\\">Tc</mi></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow><mi mathvariant=\\\"italic\\\">Tc</mi></mrow></math></script></span> cuprate superconductors has been widely observed using scanning tunneling microscopy/spectroscopy. However, it has yet to be evaluated by angle-resolved photoemission spectroscopy (ARPES) due to the difficulty in achieving both high energy and spatial resolutions. Here, we employ high-resolution spatially-resolved ARPES with a micrometric beam (micro-ARPES) to reveal the spatial dependence of the antinodal electronic states in optimally-doped Bi<span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\":\\\"image\\\",\\\"src\\\":\\\"/cms/asset/a0f62796-003e-4ca4-bc8a-7da638fce1e4/tsta_a_2379238_ilm0002.gif\\\"}' src=\\\"//:0\\\"/></span><span><span style=\\\"color: inherit; display: none;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 0.58em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\\\"><span style=\\\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\\\"><span><span><span style=\\\"font-family: MathJax_Main;\\\">2</span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.362em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow><mn>2</mn></mrow></math></script></span>Sr<span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\":\\\"image\\\",\\\"src\\\":\\\"/cms/asset/313e6073-4d1d-46ff-b9cf-e9fd40c90a91/tsta_a_2379238_ilm0003.gif\\\"}' src=\\\"//:0\\\"/></span><span><span style=\\\"color: inherit; display: none;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 0.58em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\\\"><span style=\\\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\\\"><span><span><span style=\\\"font-family: MathJax_Main;\\\">2</span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.362em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow><mn>2</mn></mrow></math></script></span>CaCu<span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\":\\\"image\\\",\\\"src\\\":\\\"/cms/asset/3a29c068-90b3-452f-adf0-e790821bab83/tsta_a_2379238_ilm0004.gif\\\"}' src=\\\"//:0\\\"/></span><span><span style=\\\"color: inherit; display: none;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 0.58em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\\\"><span style=\\\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\\\"><span><span><span style=\\\"font-family: MathJax_Main;\\\">2</span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.362em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow><mn>2</mn></mrow></math></script></span>O<span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\":\\\"image\\\",\\\"src\\\":\\\"/cms/asset/63499a7c-13d6-4d30-87d5-8e8ef7e0c5f3/tsta_a_2379238_ilm0005.gif\\\"}' src=\\\"//:0\\\"/></span><span><span style=\\\"color: inherit; display: none;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi mathvariant=\\\"italic\\\"&gt;&amp;#x3B4;&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 2.651em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 2.217em; height: 0px; font-size: 118%;\\\"><span style=\\\"position: absolute; clip: rect(1.495em, 1002.22em, 2.603em, -999.998em); top: -2.357em; left: 0em;\\\"><span><span><span><span style=\\\"font-family: MathJax_Main;\\\">8</span><span style=\\\"font-family: MathJax_Main; padding-left: 0.243em;\\\">+</span><span style=\\\"font-family: MathJax_Math-italic; padding-left: 0.243em;\\\">δ<span style=\\\"display: inline-block; overflow: hidden; height: 1px; width: 0.002em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.362em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.168em; border-left: 0px solid; width: 0px; height: 1.082em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\\\"italic\\\">δ</mi></mrow></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\\\"italic\\\">δ</mi></mrow></mrow></math></script></span>. Detailed spectral lineshape analysis was extended to the spatial mapping dataset, enabling the identification of the spatial inhomogeneity of the superconducting gap and single-particle scattering rate at the micro-scale. Moreover, these physical parameters and their correlations were statistically evaluated. Our results suggest that high-resolution spatially-resolved ARPES holds promise for facilitating a data-driven approach to unraveling complexity and uncovering key parameters for the formulation of various physical properties of materials.\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2379238\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2379238","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电子不均匀性是强相关电子系统中相邻和/或竞争多相或多阶的普遍现象。高锝锝铜氧化物超导体中的间隙不均匀性已通过扫描隧道显微镜/光谱仪得到广泛观察。然而,由于难以实现高能量和高空间分辨率,目前还没有通过角度分辨光发射光谱(ARPES)对其进行评估。在此,我们采用微米光束的高分辨率空间分辨 ARPES(micro-ARPES)来揭示最佳掺杂 Bi222Sr222CaCu222O8+δ8+δ8+δ 中反正极电子态的空间依赖性。详细的光谱线形分析扩展到了空间映射数据集,从而能够在微观尺度上识别超导间隙和单粒子散射率的空间不均匀性。此外,还对这些物理参数及其相关性进行了统计评估。我们的研究结果表明,高分辨率空间分辨 ARPES 有望促进以数据为驱动的方法来揭示复杂性,并为制定材料的各种物理性质揭示关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualization of spatial inhomogeneity in the superconducting gap using micro-ARPES
Electronic inhomogeneity arises ubiquitously as a consequence of adjacent and/or competing multiple phases or orders in strongly correlated electron systems. Gap inhomogeneity in high-Tc cuprate superconductors has been widely observed using scanning tunneling microscopy/spectroscopy. However, it has yet to be evaluated by angle-resolved photoemission spectroscopy (ARPES) due to the difficulty in achieving both high energy and spatial resolutions. Here, we employ high-resolution spatially-resolved ARPES with a micrometric beam (micro-ARPES) to reveal the spatial dependence of the antinodal electronic states in optimally-doped Bi2Sr2CaCu2O8+δ. Detailed spectral lineshape analysis was extended to the spatial mapping dataset, enabling the identification of the spatial inhomogeneity of the superconducting gap and single-particle scattering rate at the micro-scale. Moreover, these physical parameters and their correlations were statistically evaluated. Our results suggest that high-resolution spatially-resolved ARPES holds promise for facilitating a data-driven approach to unraveling complexity and uncovering key parameters for the formulation of various physical properties of materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信