Yudai Miyai, Shigeyuki Ishida, Kenichi Ozawa, Yoshiyuki Yoshida, Hiroshi Eisaki, Kenya Shimada, Hideaki Iwasawa
求助PDF
{"title":"利用微 ARPES 实现超导间隙空间不均匀性的可视化","authors":"Yudai Miyai, Shigeyuki Ishida, Kenichi Ozawa, Yoshiyuki Yoshida, Hiroshi Eisaki, Kenya Shimada, Hideaki Iwasawa","doi":"10.1080/14686996.2024.2379238","DOIUrl":null,"url":null,"abstract":"Electronic inhomogeneity arises ubiquitously as a consequence of adjacent and/or competing multiple phases or orders in strongly correlated electron systems. Gap inhomogeneity in high-<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/23348068-a604-405d-a0ca-e3a990eb8f15/tsta_a_2379238_ilm0001.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"italic\">Tc</mi></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.206em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.014em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1001.01em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Math-italic;\">T<span style=\"font-family: MathJax_Math-italic;\">c</span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"italic\">Tc</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mi mathvariant=\"italic\">Tc</mi></mrow></math></script></span> cuprate superconductors has been widely observed using scanning tunneling microscopy/spectroscopy. However, it has yet to be evaluated by angle-resolved photoemission spectroscopy (ARPES) due to the difficulty in achieving both high energy and spatial resolutions. Here, we employ high-resolution spatially-resolved ARPES with a micrometric beam (micro-ARPES) to reveal the spatial dependence of the antinodal electronic states in optimally-doped Bi<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/a0f62796-003e-4ca4-bc8a-7da638fce1e4/tsta_a_2379238_ilm0002.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.58em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Main;\">2</span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mn>2</mn></mrow></math></script></span>Sr<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/313e6073-4d1d-46ff-b9cf-e9fd40c90a91/tsta_a_2379238_ilm0003.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.58em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Main;\">2</span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mn>2</mn></mrow></math></script></span>CaCu<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/3a29c068-90b3-452f-adf0-e790821bab83/tsta_a_2379238_ilm0004.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.58em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Main;\">2</span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mn>2</mn></mrow></math></script></span>O<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/63499a7c-13d6-4d30-87d5-8e8ef7e0c5f3/tsta_a_2379238_ilm0005.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\"italic\">&#x3B4;</mi></mrow></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.651em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.217em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.495em, 1002.22em, 2.603em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span><span style=\"font-family: MathJax_Main;\">8</span><span style=\"font-family: MathJax_Main; padding-left: 0.243em;\">+</span><span style=\"font-family: MathJax_Math-italic; padding-left: 0.243em;\">δ<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.002em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.168em; border-left: 0px solid; width: 0px; height: 1.082em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\"italic\">δ</mi></mrow></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\"italic\">δ</mi></mrow></mrow></math></script></span>. Detailed spectral lineshape analysis was extended to the spatial mapping dataset, enabling the identification of the spatial inhomogeneity of the superconducting gap and single-particle scattering rate at the micro-scale. Moreover, these physical parameters and their correlations were statistically evaluated. Our results suggest that high-resolution spatially-resolved ARPES holds promise for facilitating a data-driven approach to unraveling complexity and uncovering key parameters for the formulation of various physical properties of materials.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"19 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of spatial inhomogeneity in the superconducting gap using micro-ARPES\",\"authors\":\"Yudai Miyai, Shigeyuki Ishida, Kenichi Ozawa, Yoshiyuki Yoshida, Hiroshi Eisaki, Kenya Shimada, Hideaki Iwasawa\",\"doi\":\"10.1080/14686996.2024.2379238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic inhomogeneity arises ubiquitously as a consequence of adjacent and/or competing multiple phases or orders in strongly correlated electron systems. Gap inhomogeneity in high-<span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\":\\\"image\\\",\\\"src\\\":\\\"/cms/asset/23348068-a604-405d-a0ca-e3a990eb8f15/tsta_a_2379238_ilm0001.gif\\\"}' src=\\\"//:0\\\"/></span><span><span style=\\\"color: inherit; display: none;\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"italic\\\">Tc</mi></mrow></math>' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 1.206em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 1.014em; height: 0px; font-size: 118%;\\\"><span style=\\\"position: absolute; clip: rect(1.543em, 1001.01em, 2.506em, -999.998em); top: -2.357em; left: 0em;\\\"><span><span><span style=\\\"font-family: MathJax_Math-italic;\\\">T<span style=\\\"font-family: MathJax_Math-italic;\\\">c</span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.362em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"italic\\\">Tc</mi></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow><mi mathvariant=\\\"italic\\\">Tc</mi></mrow></math></script></span> cuprate superconductors has been widely observed using scanning tunneling microscopy/spectroscopy. However, it has yet to be evaluated by angle-resolved photoemission spectroscopy (ARPES) due to the difficulty in achieving both high energy and spatial resolutions. Here, we employ high-resolution spatially-resolved ARPES with a micrometric beam (micro-ARPES) to reveal the spatial dependence of the antinodal electronic states in optimally-doped Bi<span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\":\\\"image\\\",\\\"src\\\":\\\"/cms/asset/a0f62796-003e-4ca4-bc8a-7da638fce1e4/tsta_a_2379238_ilm0002.gif\\\"}' src=\\\"//:0\\\"/></span><span><span style=\\\"color: inherit; display: none;\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn></mrow></math>' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 0.58em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\\\"><span style=\\\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\\\"><span><span><span style=\\\"font-family: MathJax_Main;\\\">2</span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.362em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow><mn>2</mn></mrow></math></script></span>Sr<span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\":\\\"image\\\",\\\"src\\\":\\\"/cms/asset/313e6073-4d1d-46ff-b9cf-e9fd40c90a91/tsta_a_2379238_ilm0003.gif\\\"}' src=\\\"//:0\\\"/></span><span><span style=\\\"color: inherit; display: none;\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn></mrow></math>' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 0.58em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\\\"><span style=\\\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\\\"><span><span><span style=\\\"font-family: MathJax_Main;\\\">2</span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.362em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow><mn>2</mn></mrow></math></script></span>CaCu<span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\":\\\"image\\\",\\\"src\\\":\\\"/cms/asset/3a29c068-90b3-452f-adf0-e790821bab83/tsta_a_2379238_ilm0004.gif\\\"}' src=\\\"//:0\\\"/></span><span><span style=\\\"color: inherit; display: none;\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn></mrow></math>' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 0.58em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\\\"><span style=\\\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\\\"><span><span><span style=\\\"font-family: MathJax_Main;\\\">2</span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.362em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>2</mn></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow><mn>2</mn></mrow></math></script></span>O<span><img alt=\\\"\\\" data-formula-source='{\\\"type\\\":\\\"image\\\",\\\"src\\\":\\\"/cms/asset/63499a7c-13d6-4d30-87d5-8e8ef7e0c5f3/tsta_a_2379238_ilm0005.gif\\\"}' src=\\\"//:0\\\"/></span><span><span style=\\\"color: inherit; display: none;\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\\\"italic\\\">&#x3B4;</mi></mrow></mrow></math>' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 2.651em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 2.217em; height: 0px; font-size: 118%;\\\"><span style=\\\"position: absolute; clip: rect(1.495em, 1002.22em, 2.603em, -999.998em); top: -2.357em; left: 0em;\\\"><span><span><span><span style=\\\"font-family: MathJax_Main;\\\">8</span><span style=\\\"font-family: MathJax_Main; padding-left: 0.243em;\\\">+</span><span style=\\\"font-family: MathJax_Math-italic; padding-left: 0.243em;\\\">δ<span style=\\\"display: inline-block; overflow: hidden; height: 1px; width: 0.002em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.362em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.168em; border-left: 0px solid; width: 0px; height: 1.082em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\\\"italic\\\">δ</mi></mrow></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\\\"italic\\\">δ</mi></mrow></mrow></math></script></span>. Detailed spectral lineshape analysis was extended to the spatial mapping dataset, enabling the identification of the spatial inhomogeneity of the superconducting gap and single-particle scattering rate at the micro-scale. Moreover, these physical parameters and their correlations were statistically evaluated. Our results suggest that high-resolution spatially-resolved ARPES holds promise for facilitating a data-driven approach to unraveling complexity and uncovering key parameters for the formulation of various physical properties of materials.\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2379238\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2379238","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用