{"title":"评估喷墨打印图案化甲壳素和壳聚糖纳米纤维的细胞粘附性和炎症反应","authors":"Tetsuya Katuragawa, Yoshikuni Teramoto","doi":"10.1002/app.56285","DOIUrl":null,"url":null,"abstract":"<p>Chitin and chitosan nanofibers (ChNF and CtsNF) are promising biomaterials due to their biocompatibility, biodegradability, and non-toxicity. This study investigates the cell adhesion properties and inflammatory responses of CtsNF, ChNF, and their mixtures when patterned on cellophane films using inkjet printing technology, keeping in mind their potential applications as cell culture scaffolds. The viscosities of 0.1 wt% aqueous dispersions of CtsNF, ChNF, and their mixtures were confirmed to be suitable for inkjet printing. Microstructures with varying thicknesses were fabricated by adjusting the printing parameters. Mouse fibroblast cells (L929) and mouse macrophages (RAW264.7) were used to evaluate cell adhesion and inflammatory responses. The results demonstrated that CtsNF microstructures exhibited excellent cell adhesion even for those as thin as ~140 nm and low inflammatory potential. This finding provides valuable insights into the development of advanced biomaterials for medical applications and could be instrumental in optimizing dosage settings for wound healing treatments as well.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"141 48","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of cell adhesion and inflammatory response of chitin and chitosan nanofibers patterned by inkjet printing\",\"authors\":\"Tetsuya Katuragawa, Yoshikuni Teramoto\",\"doi\":\"10.1002/app.56285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chitin and chitosan nanofibers (ChNF and CtsNF) are promising biomaterials due to their biocompatibility, biodegradability, and non-toxicity. This study investigates the cell adhesion properties and inflammatory responses of CtsNF, ChNF, and their mixtures when patterned on cellophane films using inkjet printing technology, keeping in mind their potential applications as cell culture scaffolds. The viscosities of 0.1 wt% aqueous dispersions of CtsNF, ChNF, and their mixtures were confirmed to be suitable for inkjet printing. Microstructures with varying thicknesses were fabricated by adjusting the printing parameters. Mouse fibroblast cells (L929) and mouse macrophages (RAW264.7) were used to evaluate cell adhesion and inflammatory responses. The results demonstrated that CtsNF microstructures exhibited excellent cell adhesion even for those as thin as ~140 nm and low inflammatory potential. This finding provides valuable insights into the development of advanced biomaterials for medical applications and could be instrumental in optimizing dosage settings for wound healing treatments as well.</p>\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":\"141 48\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/app.56285\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56285","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Evaluation of cell adhesion and inflammatory response of chitin and chitosan nanofibers patterned by inkjet printing
Chitin and chitosan nanofibers (ChNF and CtsNF) are promising biomaterials due to their biocompatibility, biodegradability, and non-toxicity. This study investigates the cell adhesion properties and inflammatory responses of CtsNF, ChNF, and their mixtures when patterned on cellophane films using inkjet printing technology, keeping in mind their potential applications as cell culture scaffolds. The viscosities of 0.1 wt% aqueous dispersions of CtsNF, ChNF, and their mixtures were confirmed to be suitable for inkjet printing. Microstructures with varying thicknesses were fabricated by adjusting the printing parameters. Mouse fibroblast cells (L929) and mouse macrophages (RAW264.7) were used to evaluate cell adhesion and inflammatory responses. The results demonstrated that CtsNF microstructures exhibited excellent cell adhesion even for those as thin as ~140 nm and low inflammatory potential. This finding provides valuable insights into the development of advanced biomaterials for medical applications and could be instrumental in optimizing dosage settings for wound healing treatments as well.
期刊介绍:
The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.