开发用于尿道成形术的多层人工尿道移植物

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Povilas Barasa, Egidijus Simoliunas, Aivaras Grybas, Ramune Zilinskaite‐Tamasauske, Darius Dasevicius, Milda Alksne, Ieva Rinkunaite, Andrius Buivydas, Emilija Baltrukonyte, Rimgaile Tamulyte, Ashwinipriyadarshini Megur, Gilvydas Verkauskas, Daiva Baltriukiene, Virginija Bukelskiene
{"title":"开发用于尿道成形术的多层人工尿道移植物","authors":"Povilas Barasa, Egidijus Simoliunas, Aivaras Grybas, Ramune Zilinskaite‐Tamasauske, Darius Dasevicius, Milda Alksne, Ieva Rinkunaite, Andrius Buivydas, Emilija Baltrukonyte, Rimgaile Tamulyte, Ashwinipriyadarshini Megur, Gilvydas Verkauskas, Daiva Baltriukiene, Virginija Bukelskiene","doi":"10.1002/jbm.a.37796","DOIUrl":null,"url":null,"abstract":"To enhance the treatment of patients' urethral defects, such as strictures and hypospadias, we investigated the potential of using artificial urethral tissue. Our study aimed to generate this tissue and assess its effectiveness in a rabbit model. Two types of bioprinted grafts, based on methacrylated gelatin‐silk fibroin (GelMA‐SF) hydrogels, were produced: acellular, as well as loaded with autologous rabbit stem cells. Rabbit adipose stem cells (RASC) were differentiated toward smooth muscle in the GelMA‐SF hydrogel, while rabbit buccal mucosa stem cells (RBMC), differentiated toward the epithelium, were seeded on its surface, forming two layers of the cell‐laden tissue. The constructs were then reinforced with polycaprolactone‐polylactic acid meshes to create implantable multilayered artificial urethral grafts. In vivo experiments showed that the cell‐laden tissue integrated into the urethra with less fibrosis and inflammation compared to its acellular counterpart. Staining to trace the implanted cells confirmed integration into the host organism 3 months postsurgery.","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"43 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of multilayered artificial urethra graft for urethroplasty\",\"authors\":\"Povilas Barasa, Egidijus Simoliunas, Aivaras Grybas, Ramune Zilinskaite‐Tamasauske, Darius Dasevicius, Milda Alksne, Ieva Rinkunaite, Andrius Buivydas, Emilija Baltrukonyte, Rimgaile Tamulyte, Ashwinipriyadarshini Megur, Gilvydas Verkauskas, Daiva Baltriukiene, Virginija Bukelskiene\",\"doi\":\"10.1002/jbm.a.37796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance the treatment of patients' urethral defects, such as strictures and hypospadias, we investigated the potential of using artificial urethral tissue. Our study aimed to generate this tissue and assess its effectiveness in a rabbit model. Two types of bioprinted grafts, based on methacrylated gelatin‐silk fibroin (GelMA‐SF) hydrogels, were produced: acellular, as well as loaded with autologous rabbit stem cells. Rabbit adipose stem cells (RASC) were differentiated toward smooth muscle in the GelMA‐SF hydrogel, while rabbit buccal mucosa stem cells (RBMC), differentiated toward the epithelium, were seeded on its surface, forming two layers of the cell‐laden tissue. The constructs were then reinforced with polycaprolactone‐polylactic acid meshes to create implantable multilayered artificial urethral grafts. In vivo experiments showed that the cell‐laden tissue integrated into the urethra with less fibrosis and inflammation compared to its acellular counterpart. Staining to trace the implanted cells confirmed integration into the host organism 3 months postsurgery.\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jbm.a.37796\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jbm.a.37796","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了加强对尿道狭窄和尿道下裂等患者尿道缺陷的治疗,我们研究了使用人工尿道组织的可能性。我们的研究旨在生成这种组织,并在兔子模型中评估其有效性。在甲基丙烯酸明胶-丝纤维蛋白(GelMA-SF)水凝胶的基础上,我们制作了两种生物打印移植物:无细胞移植物和负载自体兔干细胞移植物。兔脂肪干细胞(RASC)在 GelMA-SF 水凝胶中向平滑肌分化,而向上皮细胞分化的兔颊粘膜干细胞(RBMC)则播种在其表面,形成两层细胞负载组织。然后用聚己内酯-聚乳酸网加固这些构建物,形成可植入的多层人工尿道移植物。体内实验表明,与无细胞组织相比,含有细胞的组织与尿道融合后的纤维化和炎症程度较低。跟踪植入细胞的染色法证实,手术后 3 个月,这些细胞已融入宿主机体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of multilayered artificial urethra graft for urethroplasty
To enhance the treatment of patients' urethral defects, such as strictures and hypospadias, we investigated the potential of using artificial urethral tissue. Our study aimed to generate this tissue and assess its effectiveness in a rabbit model. Two types of bioprinted grafts, based on methacrylated gelatin‐silk fibroin (GelMA‐SF) hydrogels, were produced: acellular, as well as loaded with autologous rabbit stem cells. Rabbit adipose stem cells (RASC) were differentiated toward smooth muscle in the GelMA‐SF hydrogel, while rabbit buccal mucosa stem cells (RBMC), differentiated toward the epithelium, were seeded on its surface, forming two layers of the cell‐laden tissue. The constructs were then reinforced with polycaprolactone‐polylactic acid meshes to create implantable multilayered artificial urethral grafts. In vivo experiments showed that the cell‐laden tissue integrated into the urethra with less fibrosis and inflammation compared to its acellular counterpart. Staining to trace the implanted cells confirmed integration into the host organism 3 months postsurgery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信