Manoj Manikrao Gadewar, G. K Prashanth, Srilatha Rao, H. S. Lalithamba, N. P. Bhagya, A. S. Sowmyashree, K. Shwetha, Hemantkumar N. Akolkar
{"title":"利用印度蒿叶提取物优化生物相容性银纳米结构的绿色合成:生物医学应用的一个前景广阔的途径","authors":"Manoj Manikrao Gadewar, G. K Prashanth, Srilatha Rao, H. S. Lalithamba, N. P. Bhagya, A. S. Sowmyashree, K. Shwetha, Hemantkumar N. Akolkar","doi":"10.1007/s11243-024-00608-4","DOIUrl":null,"url":null,"abstract":"<p><i>Artemisia indica,</i> belonging to the family Asteraceae, is renowned for its rich phytoconstituents and traditional medicinal uses. This study aimed to optimize the green synthesis of biocompatible Ag NPs using varying concentrations of <i>A. indica</i> leaf extract and AgNO3. The objectives were to characterize the synthesized NPs and evaluate their potential biomedical applications. The synthesized NPs were characterized using FTIR, XRD, TEM, and Zeta sizer. The results indicated an average particle size of approximately 20 nm and a zeta potential of −23.4 mV, confirming their stability. PXRD analysis demonstrated the crystalline nature of the NPs, while FTIR analysis confirmed the capping of phytoconstituents on the nanoparticle surface. Biocompatibility was assessed using the MTT assay on the L929 cell line, showing 83% cell viability, indicating non-toxicity. Additionally, the green-synthesized NPs exhibited significant antibacterial activity at a concentration of 500 μg/mL, as evidenced by a clear zone of inhibition. This study highlights a rapid, eco-friendly synthesis method for Ag NPs, paving the way for novel biomedical applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized green synthesis of biocompatible Ag nanostructures using Artemisia Indica leaf extract: a promising avenue for biomedical applications\",\"authors\":\"Manoj Manikrao Gadewar, G. K Prashanth, Srilatha Rao, H. S. Lalithamba, N. P. Bhagya, A. S. Sowmyashree, K. Shwetha, Hemantkumar N. Akolkar\",\"doi\":\"10.1007/s11243-024-00608-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Artemisia indica,</i> belonging to the family Asteraceae, is renowned for its rich phytoconstituents and traditional medicinal uses. This study aimed to optimize the green synthesis of biocompatible Ag NPs using varying concentrations of <i>A. indica</i> leaf extract and AgNO3. The objectives were to characterize the synthesized NPs and evaluate their potential biomedical applications. The synthesized NPs were characterized using FTIR, XRD, TEM, and Zeta sizer. The results indicated an average particle size of approximately 20 nm and a zeta potential of −23.4 mV, confirming their stability. PXRD analysis demonstrated the crystalline nature of the NPs, while FTIR analysis confirmed the capping of phytoconstituents on the nanoparticle surface. Biocompatibility was assessed using the MTT assay on the L929 cell line, showing 83% cell viability, indicating non-toxicity. Additionally, the green-synthesized NPs exhibited significant antibacterial activity at a concentration of 500 μg/mL, as evidenced by a clear zone of inhibition. This study highlights a rapid, eco-friendly synthesis method for Ag NPs, paving the way for novel biomedical applications.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11243-024-00608-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11243-024-00608-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Optimized green synthesis of biocompatible Ag nanostructures using Artemisia Indica leaf extract: a promising avenue for biomedical applications
Artemisia indica, belonging to the family Asteraceae, is renowned for its rich phytoconstituents and traditional medicinal uses. This study aimed to optimize the green synthesis of biocompatible Ag NPs using varying concentrations of A. indica leaf extract and AgNO3. The objectives were to characterize the synthesized NPs and evaluate their potential biomedical applications. The synthesized NPs were characterized using FTIR, XRD, TEM, and Zeta sizer. The results indicated an average particle size of approximately 20 nm and a zeta potential of −23.4 mV, confirming their stability. PXRD analysis demonstrated the crystalline nature of the NPs, while FTIR analysis confirmed the capping of phytoconstituents on the nanoparticle surface. Biocompatibility was assessed using the MTT assay on the L929 cell line, showing 83% cell viability, indicating non-toxicity. Additionally, the green-synthesized NPs exhibited significant antibacterial activity at a concentration of 500 μg/mL, as evidenced by a clear zone of inhibition. This study highlights a rapid, eco-friendly synthesis method for Ag NPs, paving the way for novel biomedical applications.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.