{"title":"制备二氧化硅无溶剂纳米流体,用于改性商用耐腐蚀涂层","authors":"Yan Xiao, Jinliang Xie, Jing Guo, Zheshen Mu, Dongdong Yao, Yaping Zheng","doi":"10.1007/s42464-024-00278-y","DOIUrl":null,"url":null,"abstract":"<div><p>The development of a corrosion-resistance surface on a desired industrial coating is a challenge in several industries. In the aerospace industry, it is necessary to modify the corrosion-resistant coating to address the susceptibility of damage during flight for aviation applications. The present study tested three types of commercially available corrosion-resistant coatings for aviation, and the coating with the best overall performance was modified to enhance its mechanical properties to prevent coating damage due to impacts from raindrops and sand during flight. Silica (SiO<sub>2</sub>) nanoparticles with an approximate particle size of 50 nm were prepared by the sol-gel method using tetraethyl orthosilicate (TEOS). The KH560 silane coupling agent, as the neck layer and the M2070 polyether amine as the crown layer, were covalently bonded and then grafted onto the surface of the nano-SiO<sub>2</sub> core to obtain a core-shell structure of the SiO<sub>2</sub> solvent-free nanofluid (SiO<sub>2</sub>@KH560-M2070). The tensile property of the polyurethane coating was improved when a small amount of the SiO<sub>2</sub> solvent-free nanofluid was incorporated into the coating. The present study has theoretical and practical guiding significance for the selection and spraying of existing aircraft radome coatings.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 4","pages":"579 - 592"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of SiO2 solvent-free nanofluids for modification of commercial corrosion-resistant coatings\",\"authors\":\"Yan Xiao, Jinliang Xie, Jing Guo, Zheshen Mu, Dongdong Yao, Yaping Zheng\",\"doi\":\"10.1007/s42464-024-00278-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of a corrosion-resistance surface on a desired industrial coating is a challenge in several industries. In the aerospace industry, it is necessary to modify the corrosion-resistant coating to address the susceptibility of damage during flight for aviation applications. The present study tested three types of commercially available corrosion-resistant coatings for aviation, and the coating with the best overall performance was modified to enhance its mechanical properties to prevent coating damage due to impacts from raindrops and sand during flight. Silica (SiO<sub>2</sub>) nanoparticles with an approximate particle size of 50 nm were prepared by the sol-gel method using tetraethyl orthosilicate (TEOS). The KH560 silane coupling agent, as the neck layer and the M2070 polyether amine as the crown layer, were covalently bonded and then grafted onto the surface of the nano-SiO<sub>2</sub> core to obtain a core-shell structure of the SiO<sub>2</sub> solvent-free nanofluid (SiO<sub>2</sub>@KH560-M2070). The tensile property of the polyurethane coating was improved when a small amount of the SiO<sub>2</sub> solvent-free nanofluid was incorporated into the coating. The present study has theoretical and practical guiding significance for the selection and spraying of existing aircraft radome coatings.</p></div>\",\"PeriodicalId\":662,\"journal\":{\"name\":\"Journal of Rubber Research\",\"volume\":\"27 4\",\"pages\":\"579 - 592\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rubber Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42464-024-00278-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-024-00278-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Preparation of SiO2 solvent-free nanofluids for modification of commercial corrosion-resistant coatings
The development of a corrosion-resistance surface on a desired industrial coating is a challenge in several industries. In the aerospace industry, it is necessary to modify the corrosion-resistant coating to address the susceptibility of damage during flight for aviation applications. The present study tested three types of commercially available corrosion-resistant coatings for aviation, and the coating with the best overall performance was modified to enhance its mechanical properties to prevent coating damage due to impacts from raindrops and sand during flight. Silica (SiO2) nanoparticles with an approximate particle size of 50 nm were prepared by the sol-gel method using tetraethyl orthosilicate (TEOS). The KH560 silane coupling agent, as the neck layer and the M2070 polyether amine as the crown layer, were covalently bonded and then grafted onto the surface of the nano-SiO2 core to obtain a core-shell structure of the SiO2 solvent-free nanofluid (SiO2@KH560-M2070). The tensile property of the polyurethane coating was improved when a small amount of the SiO2 solvent-free nanofluid was incorporated into the coating. The present study has theoretical and practical guiding significance for the selection and spraying of existing aircraft radome coatings.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.