David López-Ramos, Miriam I. Marrufo-Pérez, Almudena Eustaquio-Martín, Luis E. López-Bascuas, Enrique A. Lopez-Poveda
{"title":"谱时调制检测和单词识别中的噪声适应性","authors":"David López-Ramos, Miriam I. Marrufo-Pérez, Almudena Eustaquio-Martín, Luis E. López-Bascuas, Enrique A. Lopez-Poveda","doi":"10.1177/23312165241266322","DOIUrl":null,"url":null,"abstract":"Noise adaptation is the improvement in auditory function as the signal of interest is delayed in the noise. Here, we investigated if noise adaptation occurs in spectral, temporal, and spectrotemporal modulation detection as well as in speech recognition. Eighteen normal-hearing adults participated in the experiments. In the modulation detection tasks, the signal was a 200ms spectrally and/or temporally modulated ripple noise. The spectral modulation rate was two cycles per octave, the temporal modulation rate was 10 Hz, and the spectrotemporal modulations combined these two modulations, which resulted in a downward-moving ripple. A control experiment was performed to determine if the results generalized to upward-moving ripples. In the speech recognition task, the signal consisted of disyllabic words unprocessed or vocoded to maintain only envelope cues. Modulation detection thresholds at 0 dB signal-to-noise ratio and speech reception thresholds were measured in quiet and in white noise (at 60 dB SPL) for noise-signal onset delays of 50 ms (early condition) and 800 ms (late condition). Adaptation was calculated as the threshold difference between the early and late conditions. Adaptation in word recognition was statistically significant for vocoded words (2.1 dB) but not for natural words (0.6 dB). Adaptation was found to be statistically significant in spectral (2.1 dB) and temporal (2.2 dB) modulation detection but not in spectrotemporal modulation detection (downward ripple: 0.0 dB, upward ripple: −0.4 dB). Findings suggest that noise adaptation in speech recognition is unrelated to improvements in the encoding of spectrotemporal modulation cues.","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptation to Noise in Spectrotemporal Modulation Detection and Word Recognition\",\"authors\":\"David López-Ramos, Miriam I. Marrufo-Pérez, Almudena Eustaquio-Martín, Luis E. López-Bascuas, Enrique A. Lopez-Poveda\",\"doi\":\"10.1177/23312165241266322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noise adaptation is the improvement in auditory function as the signal of interest is delayed in the noise. Here, we investigated if noise adaptation occurs in spectral, temporal, and spectrotemporal modulation detection as well as in speech recognition. Eighteen normal-hearing adults participated in the experiments. In the modulation detection tasks, the signal was a 200ms spectrally and/or temporally modulated ripple noise. The spectral modulation rate was two cycles per octave, the temporal modulation rate was 10 Hz, and the spectrotemporal modulations combined these two modulations, which resulted in a downward-moving ripple. A control experiment was performed to determine if the results generalized to upward-moving ripples. In the speech recognition task, the signal consisted of disyllabic words unprocessed or vocoded to maintain only envelope cues. Modulation detection thresholds at 0 dB signal-to-noise ratio and speech reception thresholds were measured in quiet and in white noise (at 60 dB SPL) for noise-signal onset delays of 50 ms (early condition) and 800 ms (late condition). Adaptation was calculated as the threshold difference between the early and late conditions. Adaptation in word recognition was statistically significant for vocoded words (2.1 dB) but not for natural words (0.6 dB). Adaptation was found to be statistically significant in spectral (2.1 dB) and temporal (2.2 dB) modulation detection but not in spectrotemporal modulation detection (downward ripple: 0.0 dB, upward ripple: −0.4 dB). Findings suggest that noise adaptation in speech recognition is unrelated to improvements in the encoding of spectrotemporal modulation cues.\",\"PeriodicalId\":48678,\"journal\":{\"name\":\"Trends in Hearing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Hearing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/23312165241266322\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23312165241266322","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Adaptation to Noise in Spectrotemporal Modulation Detection and Word Recognition
Noise adaptation is the improvement in auditory function as the signal of interest is delayed in the noise. Here, we investigated if noise adaptation occurs in spectral, temporal, and spectrotemporal modulation detection as well as in speech recognition. Eighteen normal-hearing adults participated in the experiments. In the modulation detection tasks, the signal was a 200ms spectrally and/or temporally modulated ripple noise. The spectral modulation rate was two cycles per octave, the temporal modulation rate was 10 Hz, and the spectrotemporal modulations combined these two modulations, which resulted in a downward-moving ripple. A control experiment was performed to determine if the results generalized to upward-moving ripples. In the speech recognition task, the signal consisted of disyllabic words unprocessed or vocoded to maintain only envelope cues. Modulation detection thresholds at 0 dB signal-to-noise ratio and speech reception thresholds were measured in quiet and in white noise (at 60 dB SPL) for noise-signal onset delays of 50 ms (early condition) and 800 ms (late condition). Adaptation was calculated as the threshold difference between the early and late conditions. Adaptation in word recognition was statistically significant for vocoded words (2.1 dB) but not for natural words (0.6 dB). Adaptation was found to be statistically significant in spectral (2.1 dB) and temporal (2.2 dB) modulation detection but not in spectrotemporal modulation detection (downward ripple: 0.0 dB, upward ripple: −0.4 dB). Findings suggest that noise adaptation in speech recognition is unrelated to improvements in the encoding of spectrotemporal modulation cues.
Trends in HearingAUDIOLOGY & SPEECH-LANGUAGE PATHOLOGYOTORH-OTORHINOLARYNGOLOGY
CiteScore
4.50
自引率
11.10%
发文量
44
审稿时长
12 weeks
期刊介绍:
Trends in Hearing is an open access journal completely dedicated to publishing original research and reviews focusing on human hearing, hearing loss, hearing aids, auditory implants, and aural rehabilitation. Under its former name, Trends in Amplification, the journal established itself as a forum for concise explorations of all areas of translational hearing research by leaders in the field. Trends in Hearing has now expanded its focus to include original research articles, with the goal of becoming the premier venue for research related to human hearing and hearing loss.