{"title":"大规模侧向冰碛坍塌引发了 2023 年南隆纳克湖溃决洪水,锡金喜马拉雅山脉","authors":"Taigang Zhang, Weicai Wang, Baosheng An","doi":"10.1007/s10346-024-02358-x","DOIUrl":null,"url":null,"abstract":"<p>On the night of October 3, 2023, the moraine-dammed South Lhonak Lake in Sikkim suddenly discharged a substantial volume of water, resulting in a glacial lake outburst flood (GLOF) that caused 178 fatalities and the destruction of three downstream hydropower projects, making it one of the most devastating GLOF events in the Himalayas. Leveraging satellite imagery and numerical modeling, this study analyzed the long-term evolution and outburst mechanisms of South Lhonak Lake, as well as the propagation of the GLOF, to provide valuable insight for regional GLOF risk assessment and management. The South Lhonak GLOF was triggered by the collapse of a massive lateral moraine, with an estimated collapse material volume of 16.75 × 10<sup>6</sup> m<sup>3</sup>. Following the outburst flood, the lake area decreased by 15.38%, from 1.69 ± 0.03 to 1.46 ± 0.03 km<sup>2</sup>. The impact of the GLOF extended to 169 km downstream, corresponding to a total inundation area of 32.04 ± 1.91 km<sup>2</sup>. A multi-phase r.avaflow model was employed to simulate the mass flow and cascading process. An impulse wave displacement speed of approximately 26 m·s<sup>−1</sup> was observed after the collapse of the lateral moraine, and the overtopping height on the moraine dam reached 16.11 m. The hydrograph at the dam breach site revealed that approximately 38.49 × 10<sup>6</sup> m<sup>3</sup> of water was released during the drainage process and that the peak discharge of 3.02 × 10<sup>5</sup> m<sup>3</sup>·s<sup>−1</sup> occurred 140 s after the dam breach. Upon entering the downstream channel, the peak discharge was attenuated, and its duration was prolonged because of the influence of the valley terrain. Given the current challenges in accurately identifying potential avalanche zones, we identified a discrepancy between GLOF triggers and modeling scenarios. A novel framework for GLOF hazard assessment involves driving collapses of varying magnitudes to strike the lake and subsequently simulating GLOF initiation and downstream propagation for the most plausible outburst scenario. This conceptual approach can be used to design artificial drainage and determine dam immobilization engineering criteria and to evaluate the resistance performance of remedial measures under specific striking probabilities.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A massive lateral moraine collapse triggered the 2023 South Lhonak Lake outburst flood, Sikkim Himalayas\",\"authors\":\"Taigang Zhang, Weicai Wang, Baosheng An\",\"doi\":\"10.1007/s10346-024-02358-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On the night of October 3, 2023, the moraine-dammed South Lhonak Lake in Sikkim suddenly discharged a substantial volume of water, resulting in a glacial lake outburst flood (GLOF) that caused 178 fatalities and the destruction of three downstream hydropower projects, making it one of the most devastating GLOF events in the Himalayas. Leveraging satellite imagery and numerical modeling, this study analyzed the long-term evolution and outburst mechanisms of South Lhonak Lake, as well as the propagation of the GLOF, to provide valuable insight for regional GLOF risk assessment and management. The South Lhonak GLOF was triggered by the collapse of a massive lateral moraine, with an estimated collapse material volume of 16.75 × 10<sup>6</sup> m<sup>3</sup>. Following the outburst flood, the lake area decreased by 15.38%, from 1.69 ± 0.03 to 1.46 ± 0.03 km<sup>2</sup>. The impact of the GLOF extended to 169 km downstream, corresponding to a total inundation area of 32.04 ± 1.91 km<sup>2</sup>. A multi-phase r.avaflow model was employed to simulate the mass flow and cascading process. An impulse wave displacement speed of approximately 26 m·s<sup>−1</sup> was observed after the collapse of the lateral moraine, and the overtopping height on the moraine dam reached 16.11 m. The hydrograph at the dam breach site revealed that approximately 38.49 × 10<sup>6</sup> m<sup>3</sup> of water was released during the drainage process and that the peak discharge of 3.02 × 10<sup>5</sup> m<sup>3</sup>·s<sup>−1</sup> occurred 140 s after the dam breach. Upon entering the downstream channel, the peak discharge was attenuated, and its duration was prolonged because of the influence of the valley terrain. Given the current challenges in accurately identifying potential avalanche zones, we identified a discrepancy between GLOF triggers and modeling scenarios. A novel framework for GLOF hazard assessment involves driving collapses of varying magnitudes to strike the lake and subsequently simulating GLOF initiation and downstream propagation for the most plausible outburst scenario. This conceptual approach can be used to design artificial drainage and determine dam immobilization engineering criteria and to evaluate the resistance performance of remedial measures under specific striking probabilities.</p>\",\"PeriodicalId\":17938,\"journal\":{\"name\":\"Landslides\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landslides\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10346-024-02358-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02358-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A massive lateral moraine collapse triggered the 2023 South Lhonak Lake outburst flood, Sikkim Himalayas
On the night of October 3, 2023, the moraine-dammed South Lhonak Lake in Sikkim suddenly discharged a substantial volume of water, resulting in a glacial lake outburst flood (GLOF) that caused 178 fatalities and the destruction of three downstream hydropower projects, making it one of the most devastating GLOF events in the Himalayas. Leveraging satellite imagery and numerical modeling, this study analyzed the long-term evolution and outburst mechanisms of South Lhonak Lake, as well as the propagation of the GLOF, to provide valuable insight for regional GLOF risk assessment and management. The South Lhonak GLOF was triggered by the collapse of a massive lateral moraine, with an estimated collapse material volume of 16.75 × 106 m3. Following the outburst flood, the lake area decreased by 15.38%, from 1.69 ± 0.03 to 1.46 ± 0.03 km2. The impact of the GLOF extended to 169 km downstream, corresponding to a total inundation area of 32.04 ± 1.91 km2. A multi-phase r.avaflow model was employed to simulate the mass flow and cascading process. An impulse wave displacement speed of approximately 26 m·s−1 was observed after the collapse of the lateral moraine, and the overtopping height on the moraine dam reached 16.11 m. The hydrograph at the dam breach site revealed that approximately 38.49 × 106 m3 of water was released during the drainage process and that the peak discharge of 3.02 × 105 m3·s−1 occurred 140 s after the dam breach. Upon entering the downstream channel, the peak discharge was attenuated, and its duration was prolonged because of the influence of the valley terrain. Given the current challenges in accurately identifying potential avalanche zones, we identified a discrepancy between GLOF triggers and modeling scenarios. A novel framework for GLOF hazard assessment involves driving collapses of varying magnitudes to strike the lake and subsequently simulating GLOF initiation and downstream propagation for the most plausible outburst scenario. This conceptual approach can be used to design artificial drainage and determine dam immobilization engineering criteria and to evaluate the resistance performance of remedial measures under specific striking probabilities.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database