分数科特韦格-德-弗里斯方程的完全离散有限差分方案

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Mukul Dwivedi, Tanmay Sarkar
{"title":"分数科特韦格-德-弗里斯方程的完全离散有限差分方案","authors":"Mukul Dwivedi, Tanmay Sarkar","doi":"10.1007/s10915-024-02672-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present and analyze fully discrete finite difference schemes designed for solving the initial value problem associated with the fractional Korteweg-de Vries (KdV) equation involving the fractional Laplacian. We design the scheme by introducing the discrete fractional Laplacian operator which is consistent with the continuous operator, and possesses certain properties which are instrumental for the convergence analysis. Assuming the initial data <span>\\(u_0 \\in H^{1+\\alpha }(\\mathbb {R})\\)</span>, where <span>\\(\\alpha \\in [1,2)\\)</span>, our study establishes the convergence of the approximate solutions obtained by the fully discrete finite difference schemes to a classical solution of the fractional KdV equation. Theoretical results are validated through several numerical illustrations for various values of fractional exponent <span>\\(\\alpha \\)</span>. Furthermore, we demonstrate that the Crank–Nicolson finite difference scheme preserves the inherent conserved quantities along with the improved convergence rates.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Discrete Finite Difference Schemes for the Fractional Korteweg-de Vries Equation\",\"authors\":\"Mukul Dwivedi, Tanmay Sarkar\",\"doi\":\"10.1007/s10915-024-02672-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present and analyze fully discrete finite difference schemes designed for solving the initial value problem associated with the fractional Korteweg-de Vries (KdV) equation involving the fractional Laplacian. We design the scheme by introducing the discrete fractional Laplacian operator which is consistent with the continuous operator, and possesses certain properties which are instrumental for the convergence analysis. Assuming the initial data <span>\\\\(u_0 \\\\in H^{1+\\\\alpha }(\\\\mathbb {R})\\\\)</span>, where <span>\\\\(\\\\alpha \\\\in [1,2)\\\\)</span>, our study establishes the convergence of the approximate solutions obtained by the fully discrete finite difference schemes to a classical solution of the fractional KdV equation. Theoretical results are validated through several numerical illustrations for various values of fractional exponent <span>\\\\(\\\\alpha \\\\)</span>. Furthermore, we demonstrate that the Crank–Nicolson finite difference scheme preserves the inherent conserved quantities along with the improved convergence rates.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02672-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02672-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍并分析了为求解涉及分数拉普拉斯的分数 Korteweg-de Vries (KdV) 方程相关初值问题而设计的全离散有限差分方案。我们通过引入离散分数拉普拉斯算子来设计方案,该算子与连续算子一致,并具有某些有助于收敛性分析的性质。假设初始数据为 \(u_0 \in H^{1+\alpha }(\mathbb {R})\),其中 \(\alpha \in [1,2)\), 我们的研究确定了完全离散有限差分方案得到的近似解对分数 KdV 方程经典解的收敛性。通过对分数指数 \(\alpha \)的不同值进行数值说明,验证了理论结果。此外,我们还证明了 Crank-Nicolson 有限差分方案在改进收敛率的同时还保留了固有的守恒量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fully Discrete Finite Difference Schemes for the Fractional Korteweg-de Vries Equation

Fully Discrete Finite Difference Schemes for the Fractional Korteweg-de Vries Equation

In this paper, we present and analyze fully discrete finite difference schemes designed for solving the initial value problem associated with the fractional Korteweg-de Vries (KdV) equation involving the fractional Laplacian. We design the scheme by introducing the discrete fractional Laplacian operator which is consistent with the continuous operator, and possesses certain properties which are instrumental for the convergence analysis. Assuming the initial data \(u_0 \in H^{1+\alpha }(\mathbb {R})\), where \(\alpha \in [1,2)\), our study establishes the convergence of the approximate solutions obtained by the fully discrete finite difference schemes to a classical solution of the fractional KdV equation. Theoretical results are validated through several numerical illustrations for various values of fractional exponent \(\alpha \). Furthermore, we demonstrate that the Crank–Nicolson finite difference scheme preserves the inherent conserved quantities along with the improved convergence rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信