Thomas P. Corner, Eidarus Salah, Anthony Tumber, Samanpreet Kaur, Yu Nakashima, Mark D. Allen, Lara I. Schnaubelt, Giorgia Fiorini, Lennart Brewitz, Christopher Schofield
{"title":"已获批准的 HIF 脯氨酰羟化酶抑制剂 Desidustat 和 Enarodustat 的晶体学和选择性研究","authors":"Thomas P. Corner, Eidarus Salah, Anthony Tumber, Samanpreet Kaur, Yu Nakashima, Mark D. Allen, Lara I. Schnaubelt, Giorgia Fiorini, Lennart Brewitz, Christopher Schofield","doi":"10.1002/cmdc.202400504","DOIUrl":null,"url":null,"abstract":"Prolyl hydroxylase domain‐containing proteins 1‐3 (PHD1‐3) are 2‐oxoglutarate (2OG)‐dependent oxygenases catalysing C‐4 hydroxylation of prolyl residues in α‐subunits of the heterodimeric transcription factor hypoxia‐inducible factor (HIF), modifications that promote HIF‐α degradation via the ubiquitin‐proteasome pathway. Pharmacological inhibition of the PHDs induces HIF‐α stabilisation, so promoting HIF target gene transcription. PHD inhibitors are used to treat anaemia caused by chronic kidney disease (CKD) due to their ability to stimulate erythropoietin (EPO) production. We report studies on the effects of the approved PHD inhibitors Desidustat and Enarodustat, and the clinical candidate TP0463518, on activities of a representative set of isolated recombinant human 2OG oxygenases. The three molecules manifest selectivity for PHD inhibition over that of the other 2OG oxygenases evaluated. We obtained crystal structures of Desidustat and Enarodustat in complex with the human 2OG oxygenase factor inhibiting hypoxia‐inducible factor‐α (FIH), which, together with modelling studies, inform on the binding modes of Desidustat and Enarodustat to active site Fe(II) in 2OG oxygenases, including PHD1‐3. The results will help in the design of selective inhibitors of both the PHDs and other 2OG oxygenases, which are of medicinal interest due to their involvement inter alia in metabolic regulation, epigenetic signalling, DNA‐damage repair, and agrochemical resistance.","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":"8 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallographic and Selectivity Studies on the Approved HIF Prolyl Hydroxylase Inhibitors Desidustat and Enarodustat\",\"authors\":\"Thomas P. Corner, Eidarus Salah, Anthony Tumber, Samanpreet Kaur, Yu Nakashima, Mark D. Allen, Lara I. Schnaubelt, Giorgia Fiorini, Lennart Brewitz, Christopher Schofield\",\"doi\":\"10.1002/cmdc.202400504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prolyl hydroxylase domain‐containing proteins 1‐3 (PHD1‐3) are 2‐oxoglutarate (2OG)‐dependent oxygenases catalysing C‐4 hydroxylation of prolyl residues in α‐subunits of the heterodimeric transcription factor hypoxia‐inducible factor (HIF), modifications that promote HIF‐α degradation via the ubiquitin‐proteasome pathway. Pharmacological inhibition of the PHDs induces HIF‐α stabilisation, so promoting HIF target gene transcription. PHD inhibitors are used to treat anaemia caused by chronic kidney disease (CKD) due to their ability to stimulate erythropoietin (EPO) production. We report studies on the effects of the approved PHD inhibitors Desidustat and Enarodustat, and the clinical candidate TP0463518, on activities of a representative set of isolated recombinant human 2OG oxygenases. The three molecules manifest selectivity for PHD inhibition over that of the other 2OG oxygenases evaluated. We obtained crystal structures of Desidustat and Enarodustat in complex with the human 2OG oxygenase factor inhibiting hypoxia‐inducible factor‐α (FIH), which, together with modelling studies, inform on the binding modes of Desidustat and Enarodustat to active site Fe(II) in 2OG oxygenases, including PHD1‐3. The results will help in the design of selective inhibitors of both the PHDs and other 2OG oxygenases, which are of medicinal interest due to their involvement inter alia in metabolic regulation, epigenetic signalling, DNA‐damage repair, and agrochemical resistance.\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400504\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400504","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Crystallographic and Selectivity Studies on the Approved HIF Prolyl Hydroxylase Inhibitors Desidustat and Enarodustat
Prolyl hydroxylase domain‐containing proteins 1‐3 (PHD1‐3) are 2‐oxoglutarate (2OG)‐dependent oxygenases catalysing C‐4 hydroxylation of prolyl residues in α‐subunits of the heterodimeric transcription factor hypoxia‐inducible factor (HIF), modifications that promote HIF‐α degradation via the ubiquitin‐proteasome pathway. Pharmacological inhibition of the PHDs induces HIF‐α stabilisation, so promoting HIF target gene transcription. PHD inhibitors are used to treat anaemia caused by chronic kidney disease (CKD) due to their ability to stimulate erythropoietin (EPO) production. We report studies on the effects of the approved PHD inhibitors Desidustat and Enarodustat, and the clinical candidate TP0463518, on activities of a representative set of isolated recombinant human 2OG oxygenases. The three molecules manifest selectivity for PHD inhibition over that of the other 2OG oxygenases evaluated. We obtained crystal structures of Desidustat and Enarodustat in complex with the human 2OG oxygenase factor inhibiting hypoxia‐inducible factor‐α (FIH), which, together with modelling studies, inform on the binding modes of Desidustat and Enarodustat to active site Fe(II) in 2OG oxygenases, including PHD1‐3. The results will help in the design of selective inhibitors of both the PHDs and other 2OG oxygenases, which are of medicinal interest due to their involvement inter alia in metabolic regulation, epigenetic signalling, DNA‐damage repair, and agrochemical resistance.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.