Layth L. Hamid, Hanan Hamed, Abdulbaset Mohammed Al-Fahdawi, Saja L. Hamid, Thamer Y. Mutter, Hameed Hussein Ali
{"title":"松露介导的细菌培养基制备和聚乙烯醇/海藻酸钠气凝胶珠负载氧化钛纳米粒子的菌胶合成,以提高抗菌活性","authors":"Layth L. Hamid, Hanan Hamed, Abdulbaset Mohammed Al-Fahdawi, Saja L. Hamid, Thamer Y. Mutter, Hameed Hussein Ali","doi":"10.1007/s10971-024-06541-3","DOIUrl":null,"url":null,"abstract":"<div><p>By understanding the nutritional requirements for pathogenic bacteria, researchers can effectively cultivate and study them as well as explore potential antimicrobial agents that may combat them. A new bacterial culture medium was prepared using a cost-effective and available type of fungus, <i>Terfezia spp</i>. At the same time and using the green method, titanium oxide nanoparticles (TiO<sub>2</sub> NPs) were mycosynthesized using the same fungus. In a novel manner, the TiO<sub>2</sub> NPs were loaded into polyvinyl alcohol/sodium alginate (PVA/SA/TiO<sub>2</sub> NPs) aerogel beads, which were prepared using the sol-gel method and freeze-drying cycle. These nanocomposite aerogel beads were characterized using several techniques such as UV-vis, FTIR, SEM, and XRD. Bacterial growth analysis showed successful growth of all pathogenic bacterial samples on the <i>Terfezia spp</i>. culture medium. The UV-vis analysis for PVA/SA/TiO<sub>2</sub> NPs exhibiting a characteristic peak within 260–290 nm. FTIR characterization demonstrated the successful mycosynthesis of TiO<sub>2</sub> NPs using <i>Terfezia spp</i>. and interaction between the TiO<sub>2</sub> NPs and polymer. SEM revealed the TiO<sub>2</sub> NPs had spherical morphology with an average size around 38 nm while the aerogel bead surface showed a uniform nanoporous structure. XRD analysis indicated the TiO<sub>2</sub> NPs was incorporated into the PVA/SA matrix. The mycosynthesized TiO<sub>2</sub> NPs exhibited broad-spectrum antibacterial activity against pathogenic bacterial strains, with zones of inhibition ranging between 24–34 mm, while the antimicrobial activity of the PVA/SA/TiO<sub>2</sub> NPs aerogel beads ranged between 12–20 mm, as indicated by the well diffusion assay. The minimum inhibitory concentration (MIC) of the TiO<sub>2</sub> NPs was found to range between 16–64 μg/mL, while the minimum bactericidal concentration (MBC) values were determined to be between 8–32 μg/mL for the tested pathogenic bacterial strains. Growth kinetics testing showed that the PVA/SA/TiO<sub>2</sub> NPs aerogel beads exhibited complete inhibition against all pathogenic bacterial strains, in contrast to the pure PVA/SA aerogel beads. The antibacterial performance was directly related to the loading of the TiO<sub>2</sub> NPs in the polymer matrix. Finally, the enhanced antibacterial activity of these nanocomposite aerogel beads suggests they could be utilized for antibacterial materials and biomedical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 2","pages":"512 - 523"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Truffle mediated preparation of bacterial culture medium and mycosynthesis of titanium oxide nanoparticles loaded with polyvinyl alcohol/sodium alginate aerogel beads for antibacterial activity\",\"authors\":\"Layth L. Hamid, Hanan Hamed, Abdulbaset Mohammed Al-Fahdawi, Saja L. Hamid, Thamer Y. Mutter, Hameed Hussein Ali\",\"doi\":\"10.1007/s10971-024-06541-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By understanding the nutritional requirements for pathogenic bacteria, researchers can effectively cultivate and study them as well as explore potential antimicrobial agents that may combat them. A new bacterial culture medium was prepared using a cost-effective and available type of fungus, <i>Terfezia spp</i>. At the same time and using the green method, titanium oxide nanoparticles (TiO<sub>2</sub> NPs) were mycosynthesized using the same fungus. In a novel manner, the TiO<sub>2</sub> NPs were loaded into polyvinyl alcohol/sodium alginate (PVA/SA/TiO<sub>2</sub> NPs) aerogel beads, which were prepared using the sol-gel method and freeze-drying cycle. These nanocomposite aerogel beads were characterized using several techniques such as UV-vis, FTIR, SEM, and XRD. Bacterial growth analysis showed successful growth of all pathogenic bacterial samples on the <i>Terfezia spp</i>. culture medium. The UV-vis analysis for PVA/SA/TiO<sub>2</sub> NPs exhibiting a characteristic peak within 260–290 nm. FTIR characterization demonstrated the successful mycosynthesis of TiO<sub>2</sub> NPs using <i>Terfezia spp</i>. and interaction between the TiO<sub>2</sub> NPs and polymer. SEM revealed the TiO<sub>2</sub> NPs had spherical morphology with an average size around 38 nm while the aerogel bead surface showed a uniform nanoporous structure. XRD analysis indicated the TiO<sub>2</sub> NPs was incorporated into the PVA/SA matrix. The mycosynthesized TiO<sub>2</sub> NPs exhibited broad-spectrum antibacterial activity against pathogenic bacterial strains, with zones of inhibition ranging between 24–34 mm, while the antimicrobial activity of the PVA/SA/TiO<sub>2</sub> NPs aerogel beads ranged between 12–20 mm, as indicated by the well diffusion assay. The minimum inhibitory concentration (MIC) of the TiO<sub>2</sub> NPs was found to range between 16–64 μg/mL, while the minimum bactericidal concentration (MBC) values were determined to be between 8–32 μg/mL for the tested pathogenic bacterial strains. Growth kinetics testing showed that the PVA/SA/TiO<sub>2</sub> NPs aerogel beads exhibited complete inhibition against all pathogenic bacterial strains, in contrast to the pure PVA/SA aerogel beads. The antibacterial performance was directly related to the loading of the TiO<sub>2</sub> NPs in the polymer matrix. Finally, the enhanced antibacterial activity of these nanocomposite aerogel beads suggests they could be utilized for antibacterial materials and biomedical applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"112 2\",\"pages\":\"512 - 523\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06541-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06541-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Truffle mediated preparation of bacterial culture medium and mycosynthesis of titanium oxide nanoparticles loaded with polyvinyl alcohol/sodium alginate aerogel beads for antibacterial activity
By understanding the nutritional requirements for pathogenic bacteria, researchers can effectively cultivate and study them as well as explore potential antimicrobial agents that may combat them. A new bacterial culture medium was prepared using a cost-effective and available type of fungus, Terfezia spp. At the same time and using the green method, titanium oxide nanoparticles (TiO2 NPs) were mycosynthesized using the same fungus. In a novel manner, the TiO2 NPs were loaded into polyvinyl alcohol/sodium alginate (PVA/SA/TiO2 NPs) aerogel beads, which were prepared using the sol-gel method and freeze-drying cycle. These nanocomposite aerogel beads were characterized using several techniques such as UV-vis, FTIR, SEM, and XRD. Bacterial growth analysis showed successful growth of all pathogenic bacterial samples on the Terfezia spp. culture medium. The UV-vis analysis for PVA/SA/TiO2 NPs exhibiting a characteristic peak within 260–290 nm. FTIR characterization demonstrated the successful mycosynthesis of TiO2 NPs using Terfezia spp. and interaction between the TiO2 NPs and polymer. SEM revealed the TiO2 NPs had spherical morphology with an average size around 38 nm while the aerogel bead surface showed a uniform nanoporous structure. XRD analysis indicated the TiO2 NPs was incorporated into the PVA/SA matrix. The mycosynthesized TiO2 NPs exhibited broad-spectrum antibacterial activity against pathogenic bacterial strains, with zones of inhibition ranging between 24–34 mm, while the antimicrobial activity of the PVA/SA/TiO2 NPs aerogel beads ranged between 12–20 mm, as indicated by the well diffusion assay. The minimum inhibitory concentration (MIC) of the TiO2 NPs was found to range between 16–64 μg/mL, while the minimum bactericidal concentration (MBC) values were determined to be between 8–32 μg/mL for the tested pathogenic bacterial strains. Growth kinetics testing showed that the PVA/SA/TiO2 NPs aerogel beads exhibited complete inhibition against all pathogenic bacterial strains, in contrast to the pure PVA/SA aerogel beads. The antibacterial performance was directly related to the loading of the TiO2 NPs in the polymer matrix. Finally, the enhanced antibacterial activity of these nanocomposite aerogel beads suggests they could be utilized for antibacterial materials and biomedical applications.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.