空气-水上升气泡管流中湍流特性的数值研究

IF 3.6 2区 工程技术 Q1 MECHANICS
Ingu Lee, Jaehee Chang, Kiyoung Kim, Haecheon Choi
{"title":"空气-水上升气泡管流中湍流特性的数值研究","authors":"Ingu Lee, Jaehee Chang, Kiyoung Kim, Haecheon Choi","doi":"10.1017/jfm.2024.652","DOIUrl":null,"url":null,"abstract":"A high-resolution numerical simulation of an air–water turbulent upward bubbly flow in a pipe is performed to investigate the turbulence characteristics and bubble interaction with the wall. We consider three bubble equivalent diameters and three total bubble volume fractions. The bulk and bubble Reynolds numbers are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline1.png\"/> <jats:tex-math>$Re_{bulk}= u_{bulk} D/\\nu _w = 5300$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline2.png\"/> <jats:tex-math>$Re_{bub}= (\\langle u_{bub}\\rangle - u_{bulk}) d_{eq}/\\nu _w = 533\\unicode{x2013}1000$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, respectively, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline3.png\"/> <jats:tex-math>$u_{bulk}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the water bulk velocity, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline4.png\"/> <jats:tex-math>$\\langle u_{bub}\\rangle$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the overall bubble mean velocity, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline5.png\"/> <jats:tex-math>$D$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the pipe diameter and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline6.png\"/> <jats:tex-math>$\\nu _w$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the water kinematic viscosity. The mean water velocity near the wall significantly increases due to bubble interaction with the wall, and the root-mean-square water velocity fluctuations are proportional to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline7.png\"/> <jats:tex-math>$\\bar {\\psi }(r)^{0.4}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024006529_inline8.png\"/> <jats:tex-math>$\\bar {\\psi } (r)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the mean bubble volume fraction. For the cases considered, the bubble-induced turbulence suppresses the shear-induced turbulence and becomes the dominant flow characteristic at all radial locations including near the wall. Rising bubbles near the wall mostly bounce against the wall rather than slide along the wall or hang around the wall without collision. Low-speed streaks observed in the near-wall region in the absence of bubbles nearly disappear due to the bouncing bubbles. These bouncing bubbles generate counter-rotating vortices in their wake, and increase the skin friction by sweeping high-speed water towards the wall. We also suggest an algebraic Reynolds-averaged Navier–Stokes model considering the interaction between shear-induced and bubble-induced turbulence. This model provides accurate predictions for a wide range of liquid bulk Reynolds numbers.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"8 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical study on the turbulence characteristics in an air–water upward bubbly pipe flow\",\"authors\":\"Ingu Lee, Jaehee Chang, Kiyoung Kim, Haecheon Choi\",\"doi\":\"10.1017/jfm.2024.652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high-resolution numerical simulation of an air–water turbulent upward bubbly flow in a pipe is performed to investigate the turbulence characteristics and bubble interaction with the wall. We consider three bubble equivalent diameters and three total bubble volume fractions. The bulk and bubble Reynolds numbers are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024006529_inline1.png\\\"/> <jats:tex-math>$Re_{bulk}= u_{bulk} D/\\\\nu _w = 5300$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024006529_inline2.png\\\"/> <jats:tex-math>$Re_{bub}= (\\\\langle u_{bub}\\\\rangle - u_{bulk}) d_{eq}/\\\\nu _w = 533\\\\unicode{x2013}1000$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, respectively, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024006529_inline3.png\\\"/> <jats:tex-math>$u_{bulk}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the water bulk velocity, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024006529_inline4.png\\\"/> <jats:tex-math>$\\\\langle u_{bub}\\\\rangle$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the overall bubble mean velocity, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024006529_inline5.png\\\"/> <jats:tex-math>$D$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the pipe diameter and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024006529_inline6.png\\\"/> <jats:tex-math>$\\\\nu _w$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the water kinematic viscosity. The mean water velocity near the wall significantly increases due to bubble interaction with the wall, and the root-mean-square water velocity fluctuations are proportional to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024006529_inline7.png\\\"/> <jats:tex-math>$\\\\bar {\\\\psi }(r)^{0.4}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024006529_inline8.png\\\"/> <jats:tex-math>$\\\\bar {\\\\psi } (r)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the mean bubble volume fraction. For the cases considered, the bubble-induced turbulence suppresses the shear-induced turbulence and becomes the dominant flow characteristic at all radial locations including near the wall. Rising bubbles near the wall mostly bounce against the wall rather than slide along the wall or hang around the wall without collision. Low-speed streaks observed in the near-wall region in the absence of bubbles nearly disappear due to the bouncing bubbles. These bouncing bubbles generate counter-rotating vortices in their wake, and increase the skin friction by sweeping high-speed water towards the wall. We also suggest an algebraic Reynolds-averaged Navier–Stokes model considering the interaction between shear-induced and bubble-induced turbulence. This model provides accurate predictions for a wide range of liquid bulk Reynolds numbers.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.652\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.652","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对管道中的空气-水湍流向上气泡流进行了高分辨率数值模拟,以研究湍流特性以及气泡与管壁的相互作用。我们考虑了三种气泡等效直径和三种气泡总体积分数。体积和气泡的雷诺数为 $Re_{bulk}= u_{bulk}D/\nu _w = 5300$ 和 $Re_{bub}= (\langle u_{bub}\rangle - u_{bulk}) d_{eq}/\nu _w = 533\unicode{x2013}1000$ ,其中 $u_{bulk}$ 是水的体积速度、 $\langle u_{bub}\rangle$ 是整个气泡的平均速度,$D$ 是管道直径,$\nu _w$ 是水的运动粘度。由于气泡与管壁的相互作用,管壁附近的平均水流速度显著增加,且均方根水流速度波动与 $\bar {\psi }(r)^{0.4}$ 成正比,其中 $\bar {\psi } (r)$ 是平均气泡速度。(r)$ 是平均气泡体积分数。在所考虑的情况下,气泡引起的湍流抑制了剪切引起的湍流,并成为所有径向位置(包括靠近壁面)的主要流动特征。靠近壁面的上升气泡大多会反弹到壁面上,而不是沿着壁面滑动或悬挂在壁面周围而不发生碰撞。由于气泡的反弹,在没有气泡的近壁区域观察到的低速条纹几乎消失。这些反弹气泡在其尾部产生反向旋转漩涡,并通过将高速水流卷向壁面来增加表皮摩擦力。我们还提出了一个代数雷诺平均纳维-斯托克斯模型,该模型考虑了剪切诱导湍流和气泡诱导湍流之间的相互作用。该模型可对各种液体体积雷诺数进行精确预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical study on the turbulence characteristics in an air–water upward bubbly pipe flow
A high-resolution numerical simulation of an air–water turbulent upward bubbly flow in a pipe is performed to investigate the turbulence characteristics and bubble interaction with the wall. We consider three bubble equivalent diameters and three total bubble volume fractions. The bulk and bubble Reynolds numbers are $Re_{bulk}= u_{bulk} D/\nu _w = 5300$ and $Re_{bub}= (\langle u_{bub}\rangle - u_{bulk}) d_{eq}/\nu _w = 533\unicode{x2013}1000$ , respectively, where $u_{bulk}$ is the water bulk velocity, $\langle u_{bub}\rangle$ is the overall bubble mean velocity, $D$ is the pipe diameter and $\nu _w$ is the water kinematic viscosity. The mean water velocity near the wall significantly increases due to bubble interaction with the wall, and the root-mean-square water velocity fluctuations are proportional to $\bar {\psi }(r)^{0.4}$ , where $\bar {\psi } (r)$ is the mean bubble volume fraction. For the cases considered, the bubble-induced turbulence suppresses the shear-induced turbulence and becomes the dominant flow characteristic at all radial locations including near the wall. Rising bubbles near the wall mostly bounce against the wall rather than slide along the wall or hang around the wall without collision. Low-speed streaks observed in the near-wall region in the absence of bubbles nearly disappear due to the bouncing bubbles. These bouncing bubbles generate counter-rotating vortices in their wake, and increase the skin friction by sweeping high-speed water towards the wall. We also suggest an algebraic Reynolds-averaged Navier–Stokes model considering the interaction between shear-induced and bubble-induced turbulence. This model provides accurate predictions for a wide range of liquid bulk Reynolds numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信