同向旋转悬浮液泰勒-库埃特流中的不稳定性和颗粒诱导模式

IF 3.6 2区 工程技术 Q1 MECHANICS
Manojit Ghosh, Meheboob Alam
{"title":"同向旋转悬浮液泰勒-库埃特流中的不稳定性和颗粒诱导模式","authors":"Manojit Ghosh, Meheboob Alam","doi":"10.1017/jfm.2024.785","DOIUrl":null,"url":null,"abstract":"The first experimental results on pattern transitions in the co-rotation regime (i.e. the rotation ratio <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline1.png\"/> <jats:tex-math>$\\varOmega = \\omega _o/\\omega _i &gt; 0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline2.png\"/> <jats:tex-math>$\\omega _i$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline3.png\"/> <jats:tex-math>$\\omega _o$</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the angular speeds of the inner and outer cylinders, respectively) of the Taylor–Couette flow (TCF) are reported for a neutrally buoyant suspension of non-colloidal particles, up to a particle volume fraction of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline4.png\"/> <jats:tex-math>$\\phi = 0.3$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. While the stationary Taylor vortex flow (TVF) is the primary bifurcating state in dilute suspensions (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline5.png\"/> <jats:tex-math>$\\phi \\leq ~0.05$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), the non-axisymmetric oscillatory states, such as the spiral vortex flow (SVF) and the ribbon (RIB), appear as primary bifurcations with increasing particle loading, with an overall de-stabilization of the primary bifurcating states (TVF/SVF/RIB) being found with increasing <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline6.png\"/> <jats:tex-math>$\\phi$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline7.png\"/> <jats:tex-math>$\\varOmega \\geq ~0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. At small co-rotations (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline8.png\"/> <jats:tex-math>$\\varOmega \\sim 0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), the particles play the dual role of stabilization (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline9.png\"/> <jats:tex-math>$\\phi &lt; 0.1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and destabilization (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007857_inline10.png\"/> <jats:tex-math>$\\phi \\geq ~0.1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) on the secondary/tertiary oscillatory states. The distinctive features of the ‘particle-induced’ spiral vortices are identified and contrasted with those of the ‘fluid-induced’ spirals that operate in the counter-rotation regime.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instabilities and particle-induced patterns in co-rotating suspension Taylor–Couette flow\",\"authors\":\"Manojit Ghosh, Meheboob Alam\",\"doi\":\"10.1017/jfm.2024.785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first experimental results on pattern transitions in the co-rotation regime (i.e. the rotation ratio <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024007857_inline1.png\\\"/> <jats:tex-math>$\\\\varOmega = \\\\omega _o/\\\\omega _i &gt; 0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024007857_inline2.png\\\"/> <jats:tex-math>$\\\\omega _i$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024007857_inline3.png\\\"/> <jats:tex-math>$\\\\omega _o$</jats:tex-math> </jats:alternatives> </jats:inline-formula> are the angular speeds of the inner and outer cylinders, respectively) of the Taylor–Couette flow (TCF) are reported for a neutrally buoyant suspension of non-colloidal particles, up to a particle volume fraction of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024007857_inline4.png\\\"/> <jats:tex-math>$\\\\phi = 0.3$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. While the stationary Taylor vortex flow (TVF) is the primary bifurcating state in dilute suspensions (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024007857_inline5.png\\\"/> <jats:tex-math>$\\\\phi \\\\leq ~0.05$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), the non-axisymmetric oscillatory states, such as the spiral vortex flow (SVF) and the ribbon (RIB), appear as primary bifurcations with increasing particle loading, with an overall de-stabilization of the primary bifurcating states (TVF/SVF/RIB) being found with increasing <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024007857_inline6.png\\\"/> <jats:tex-math>$\\\\phi$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024007857_inline7.png\\\"/> <jats:tex-math>$\\\\varOmega \\\\geq ~0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. At small co-rotations (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024007857_inline8.png\\\"/> <jats:tex-math>$\\\\varOmega \\\\sim 0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), the particles play the dual role of stabilization (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024007857_inline9.png\\\"/> <jats:tex-math>$\\\\phi &lt; 0.1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and destabilization (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024007857_inline10.png\\\"/> <jats:tex-math>$\\\\phi \\\\geq ~0.1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) on the secondary/tertiary oscillatory states. The distinctive features of the ‘particle-induced’ spiral vortices are identified and contrasted with those of the ‘fluid-induced’ spirals that operate in the counter-rotation regime.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.785\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.785","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

对于非胶体颗粒的中性浮力悬浮液,报告了泰勒-库埃特流(TCF)在共旋转机制(即旋转比 $\varOmega = \omega _o/\omega _i > 0$ ,其中 $\omega _i$ 和 $\omega _o$ 分别是内圆柱和外圆柱的角速度)中模式转换的首次实验结果,颗粒体积分数最高为 $\phi = 0.3$。虽然静止泰勒涡流(TVF)是稀悬浮液的主要分叉状态($\phi \leq ~0.05$ ),非轴对称振荡状态,如螺旋涡流(SVF)和带状(RIB),随着颗粒载荷的增加而出现主要分岔,在所有 $\varOmega \geq ~0$ 的情况下,随着 $\phi$ 的增加,发现主要分岔状态(TVF/SVF/RIB)总体上不再稳定。在较小的同向旋转($\varOmega \sim 0$)下,粒子对二级/三级振荡状态起着稳定($\phi < 0.1$)和失稳($\phi \geq ~0.1$)的双重作用。确定了 "粒子诱导 "螺旋涡旋的显著特征,并将其与在反旋转机制下运行的 "流体诱导 "螺旋涡旋的特征进行了对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instabilities and particle-induced patterns in co-rotating suspension Taylor–Couette flow
The first experimental results on pattern transitions in the co-rotation regime (i.e. the rotation ratio $\varOmega = \omega _o/\omega _i > 0$ , where $\omega _i$ and $\omega _o$ are the angular speeds of the inner and outer cylinders, respectively) of the Taylor–Couette flow (TCF) are reported for a neutrally buoyant suspension of non-colloidal particles, up to a particle volume fraction of $\phi = 0.3$ . While the stationary Taylor vortex flow (TVF) is the primary bifurcating state in dilute suspensions ( $\phi \leq ~0.05$ ), the non-axisymmetric oscillatory states, such as the spiral vortex flow (SVF) and the ribbon (RIB), appear as primary bifurcations with increasing particle loading, with an overall de-stabilization of the primary bifurcating states (TVF/SVF/RIB) being found with increasing $\phi$ for all $\varOmega \geq ~0$ . At small co-rotations ( $\varOmega \sim 0$ ), the particles play the dual role of stabilization ( $\phi < 0.1$ ) and destabilization ( $\phi \geq ~0.1$ ) on the secondary/tertiary oscillatory states. The distinctive features of the ‘particle-induced’ spiral vortices are identified and contrasted with those of the ‘fluid-induced’ spirals that operate in the counter-rotation regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信