Puranjan Mishra, Ifunanya R. Akaniro, Ruilong Zhang, Peixin Wang, Yiqi Geng, Dongyi Li, Qiuxiang Xu, Jonathan W. C. Wong, Jun Zhao
{"title":"发掘 Ni/Fe2O3 双金属纳米颗粒在发酵法生物制氢中的潜力","authors":"Puranjan Mishra, Ifunanya R. Akaniro, Ruilong Zhang, Peixin Wang, Yiqi Geng, Dongyi Li, Qiuxiang Xu, Jonathan W. C. Wong, Jun Zhao","doi":"10.1021/acsestengg.4c00269","DOIUrl":null,"url":null,"abstract":"The coordinated system of inorganic nanoparticle-intact living cells has shown great potential in fermentative hydrogen (H<sub>2</sub>) production. Meanwhile, sluggish electron transfer and energy loss during transmembrane diffusion restrict the production of biohydrogen (BioH<sub>2</sub>). Herein, iron oxide, nickel oxide, and Ni/Fe<sub>2</sub>O<sub>3</sub> bimetallic nanocomposites were prepared through the coprecipitation method to investigate their potential effect on the dark fermentative hydrogen production (DFHP) system. The results showed that BioH<sub>2</sub> production could be enhanced by using nickel and iron oxide composites in DFHP, surpassing the performance of individual iron oxide or nickel oxide and their physical mixture. Specifically, Ni/Fe<sub>2</sub>O<sub>3</sub>-5% added to the feed at 150 mg/L increased the BioH<sub>2</sub> yields by 51.24% compared to that in its controlled experiment. The microbial community analysis confirmed a significant change in compositional proportions of the microbiome structure of DFHP in response to Ni/Fe<sub>2</sub>O<sub>3</sub>-5 wt %. The Enterobacter species proportions increased from 32.0% to 39.0%, along with some unclassified genera of microbial communities, from 34.0% to 42.0%, by supplementation of the nanomaterials. Enterobacter species are versatile facultative hydrogen producers and can use various organic wastes as the sole carbon source. The results suggested that the supplemented Ni/Fe<sub>2</sub>O<sub>3</sub>-5% induced the glycolytic efficacy and Fe and Ni availability, thereby increasing the hydrogenase activities. This study provided novel insights into integrating Ni/Fe<sub>2</sub>O<sub>3</sub> into the DFHP system and depicted its potential as an excellent catalyst to increase BioH<sub>2</sub> production. The distinctive microbial communities, unidentified hydrogen-producing bacteria, and increased BioH<sub>2</sub> yield due to the presence of Ni/Fe<sub>2</sub>O<sub>3</sub> in the DFHP system suggest unique and substantial advantages for the sustainable use of bimetallic nanomaterials in fermentation technology.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"40 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Potential of Ni/Fe2O3 Bimetallic Nanoparticles for Fermentative Biohydrogen Production\",\"authors\":\"Puranjan Mishra, Ifunanya R. Akaniro, Ruilong Zhang, Peixin Wang, Yiqi Geng, Dongyi Li, Qiuxiang Xu, Jonathan W. C. Wong, Jun Zhao\",\"doi\":\"10.1021/acsestengg.4c00269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coordinated system of inorganic nanoparticle-intact living cells has shown great potential in fermentative hydrogen (H<sub>2</sub>) production. Meanwhile, sluggish electron transfer and energy loss during transmembrane diffusion restrict the production of biohydrogen (BioH<sub>2</sub>). Herein, iron oxide, nickel oxide, and Ni/Fe<sub>2</sub>O<sub>3</sub> bimetallic nanocomposites were prepared through the coprecipitation method to investigate their potential effect on the dark fermentative hydrogen production (DFHP) system. The results showed that BioH<sub>2</sub> production could be enhanced by using nickel and iron oxide composites in DFHP, surpassing the performance of individual iron oxide or nickel oxide and their physical mixture. Specifically, Ni/Fe<sub>2</sub>O<sub>3</sub>-5% added to the feed at 150 mg/L increased the BioH<sub>2</sub> yields by 51.24% compared to that in its controlled experiment. The microbial community analysis confirmed a significant change in compositional proportions of the microbiome structure of DFHP in response to Ni/Fe<sub>2</sub>O<sub>3</sub>-5 wt %. The Enterobacter species proportions increased from 32.0% to 39.0%, along with some unclassified genera of microbial communities, from 34.0% to 42.0%, by supplementation of the nanomaterials. Enterobacter species are versatile facultative hydrogen producers and can use various organic wastes as the sole carbon source. The results suggested that the supplemented Ni/Fe<sub>2</sub>O<sub>3</sub>-5% induced the glycolytic efficacy and Fe and Ni availability, thereby increasing the hydrogenase activities. This study provided novel insights into integrating Ni/Fe<sub>2</sub>O<sub>3</sub> into the DFHP system and depicted its potential as an excellent catalyst to increase BioH<sub>2</sub> production. The distinctive microbial communities, unidentified hydrogen-producing bacteria, and increased BioH<sub>2</sub> yield due to the presence of Ni/Fe<sub>2</sub>O<sub>3</sub> in the DFHP system suggest unique and substantial advantages for the sustainable use of bimetallic nanomaterials in fermentation technology.\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsestengg.4c00269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Unlocking the Potential of Ni/Fe2O3 Bimetallic Nanoparticles for Fermentative Biohydrogen Production
The coordinated system of inorganic nanoparticle-intact living cells has shown great potential in fermentative hydrogen (H2) production. Meanwhile, sluggish electron transfer and energy loss during transmembrane diffusion restrict the production of biohydrogen (BioH2). Herein, iron oxide, nickel oxide, and Ni/Fe2O3 bimetallic nanocomposites were prepared through the coprecipitation method to investigate their potential effect on the dark fermentative hydrogen production (DFHP) system. The results showed that BioH2 production could be enhanced by using nickel and iron oxide composites in DFHP, surpassing the performance of individual iron oxide or nickel oxide and their physical mixture. Specifically, Ni/Fe2O3-5% added to the feed at 150 mg/L increased the BioH2 yields by 51.24% compared to that in its controlled experiment. The microbial community analysis confirmed a significant change in compositional proportions of the microbiome structure of DFHP in response to Ni/Fe2O3-5 wt %. The Enterobacter species proportions increased from 32.0% to 39.0%, along with some unclassified genera of microbial communities, from 34.0% to 42.0%, by supplementation of the nanomaterials. Enterobacter species are versatile facultative hydrogen producers and can use various organic wastes as the sole carbon source. The results suggested that the supplemented Ni/Fe2O3-5% induced the glycolytic efficacy and Fe and Ni availability, thereby increasing the hydrogenase activities. This study provided novel insights into integrating Ni/Fe2O3 into the DFHP system and depicted its potential as an excellent catalyst to increase BioH2 production. The distinctive microbial communities, unidentified hydrogen-producing bacteria, and increased BioH2 yield due to the presence of Ni/Fe2O3 in the DFHP system suggest unique and substantial advantages for the sustainable use of bimetallic nanomaterials in fermentation technology.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.