Mauro Pravettoni, Min Hsian Saw, Giorgio Bardizza, Giovanni Bellenda, Romain Couderc, Gabi Friesen, Werner Herrmann, Shin Woei Leow, Stefan Riechelmann, Flavio Valoti, Arvid van der Heide, Frank Weinrich, Stefan Winter
{"title":"入射角效应:IEC 61853-2 新测量方法的验证","authors":"Mauro Pravettoni, Min Hsian Saw, Giorgio Bardizza, Giovanni Bellenda, Romain Couderc, Gabi Friesen, Werner Herrmann, Shin Woei Leow, Stefan Riechelmann, Flavio Valoti, Arvid van der Heide, Frank Weinrich, Stefan Winter","doi":"10.1002/pip.3850","DOIUrl":null,"url":null,"abstract":"The incidence angle effect causes a decrease in the photogenerated current of PV modules when they are subject to incident irradiance at wide angles: Its relevance should be quantified for accurate energy yield purposes and has recently gained significance due to the rising interest in novel integrated PV applications, where vertical or nonoptimal tilt are favored (e.g., in urban structures, in agrivoltaics, and vehicles). The international standard IEC 61853-2 presents both outdoor and indoor measurement methods: However, the indoor measurement method for commercial-size modules is often impractical due to irradiance uniformity limitations on the volume spanned by the tested module upon rotation in most of the solar simulators available on the market. In recent years, new solutions have been proposed to overcome these limitations and allow wider adoption of this standard: However, method validations and interlaboratory comparisons have been conducted so far only on small-area samples, and a real validation on commercial-size modules is still missing. In this work, we aim at filling this gap, reporting the results of an interlaboratory comparison conducted within the international project team that is currently working at the new edition of IEC 61853-2. The results show a remarkable agreement between different measurement methods, thus validating more options for the evaluation of this important effect.","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"16 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incidence Angle Effect: Validation of New Measurement Methods for IEC 61853-2\",\"authors\":\"Mauro Pravettoni, Min Hsian Saw, Giorgio Bardizza, Giovanni Bellenda, Romain Couderc, Gabi Friesen, Werner Herrmann, Shin Woei Leow, Stefan Riechelmann, Flavio Valoti, Arvid van der Heide, Frank Weinrich, Stefan Winter\",\"doi\":\"10.1002/pip.3850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incidence angle effect causes a decrease in the photogenerated current of PV modules when they are subject to incident irradiance at wide angles: Its relevance should be quantified for accurate energy yield purposes and has recently gained significance due to the rising interest in novel integrated PV applications, where vertical or nonoptimal tilt are favored (e.g., in urban structures, in agrivoltaics, and vehicles). The international standard IEC 61853-2 presents both outdoor and indoor measurement methods: However, the indoor measurement method for commercial-size modules is often impractical due to irradiance uniformity limitations on the volume spanned by the tested module upon rotation in most of the solar simulators available on the market. In recent years, new solutions have been proposed to overcome these limitations and allow wider adoption of this standard: However, method validations and interlaboratory comparisons have been conducted so far only on small-area samples, and a real validation on commercial-size modules is still missing. In this work, we aim at filling this gap, reporting the results of an interlaboratory comparison conducted within the international project team that is currently working at the new edition of IEC 61853-2. The results show a remarkable agreement between different measurement methods, thus validating more options for the evaluation of this important effect.\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pip.3850\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pip.3850","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Incidence Angle Effect: Validation of New Measurement Methods for IEC 61853-2
The incidence angle effect causes a decrease in the photogenerated current of PV modules when they are subject to incident irradiance at wide angles: Its relevance should be quantified for accurate energy yield purposes and has recently gained significance due to the rising interest in novel integrated PV applications, where vertical or nonoptimal tilt are favored (e.g., in urban structures, in agrivoltaics, and vehicles). The international standard IEC 61853-2 presents both outdoor and indoor measurement methods: However, the indoor measurement method for commercial-size modules is often impractical due to irradiance uniformity limitations on the volume spanned by the tested module upon rotation in most of the solar simulators available on the market. In recent years, new solutions have been proposed to overcome these limitations and allow wider adoption of this standard: However, method validations and interlaboratory comparisons have been conducted so far only on small-area samples, and a real validation on commercial-size modules is still missing. In this work, we aim at filling this gap, reporting the results of an interlaboratory comparison conducted within the international project team that is currently working at the new edition of IEC 61853-2. The results show a remarkable agreement between different measurement methods, thus validating more options for the evaluation of this important effect.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.