{"title":"完成 Oidiodendron maius splipalmivirus 1 的基因组序列","authors":"Stefania Daghino, Marco Forgia, Massimo Turina","doi":"10.1007/s00705-024-06126-z","DOIUrl":null,"url":null,"abstract":"<div><p>Mycoviruses with an unprecedented genome organization, featuring the RNA-directed RNA polymerase (RdRp) palm domain coding sequence being split into two distinct genome segments, have been found recently in a few fungi and oomycetes of different lineages and have been proposed to be named “splipalmiviruses”. One of these, Oidiodendron maius splipalmivirus 1 (OmSPV1), has been detected in the ericoid mycorrhizal fungus <i>Oidiodendron maius</i>, and it has been proposed to be bisegmented. Here, we complete the genome sequence of this virus by describing a third RNA segment, which is 2000 nt long and whose terminal sequences are identical to those of the other two segments of OmSPV1. This segment contains a single open reading frame that codes for a protein with unknown function and has a low level of sequence identity (47%) to the putative protein encoded by the third segment of another splipalmivirus from <i>Magnaporthe oryzae</i>: Magnaporthe oryzae narnavirus virus 1 (MoNV1). Based on these features, we propose the RNA segment to be the third segment of the OmSPV1 genome.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"169 10","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00705-024-06126-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Completion of the genome sequence of Oidiodendron maius splipalmivirus 1\",\"authors\":\"Stefania Daghino, Marco Forgia, Massimo Turina\",\"doi\":\"10.1007/s00705-024-06126-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mycoviruses with an unprecedented genome organization, featuring the RNA-directed RNA polymerase (RdRp) palm domain coding sequence being split into two distinct genome segments, have been found recently in a few fungi and oomycetes of different lineages and have been proposed to be named “splipalmiviruses”. One of these, Oidiodendron maius splipalmivirus 1 (OmSPV1), has been detected in the ericoid mycorrhizal fungus <i>Oidiodendron maius</i>, and it has been proposed to be bisegmented. Here, we complete the genome sequence of this virus by describing a third RNA segment, which is 2000 nt long and whose terminal sequences are identical to those of the other two segments of OmSPV1. This segment contains a single open reading frame that codes for a protein with unknown function and has a low level of sequence identity (47%) to the putative protein encoded by the third segment of another splipalmivirus from <i>Magnaporthe oryzae</i>: Magnaporthe oryzae narnavirus virus 1 (MoNV1). Based on these features, we propose the RNA segment to be the third segment of the OmSPV1 genome.</p></div>\",\"PeriodicalId\":8359,\"journal\":{\"name\":\"Archives of Virology\",\"volume\":\"169 10\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00705-024-06126-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00705-024-06126-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-024-06126-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
Completion of the genome sequence of Oidiodendron maius splipalmivirus 1
Mycoviruses with an unprecedented genome organization, featuring the RNA-directed RNA polymerase (RdRp) palm domain coding sequence being split into two distinct genome segments, have been found recently in a few fungi and oomycetes of different lineages and have been proposed to be named “splipalmiviruses”. One of these, Oidiodendron maius splipalmivirus 1 (OmSPV1), has been detected in the ericoid mycorrhizal fungus Oidiodendron maius, and it has been proposed to be bisegmented. Here, we complete the genome sequence of this virus by describing a third RNA segment, which is 2000 nt long and whose terminal sequences are identical to those of the other two segments of OmSPV1. This segment contains a single open reading frame that codes for a protein with unknown function and has a low level of sequence identity (47%) to the putative protein encoded by the third segment of another splipalmivirus from Magnaporthe oryzae: Magnaporthe oryzae narnavirus virus 1 (MoNV1). Based on these features, we propose the RNA segment to be the third segment of the OmSPV1 genome.
期刊介绍:
Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.