Michael J. Caplan, Richard Baldwin, Xiangyun Yin, Alexander Grishin, Stephanie Eisenbarth, Hugh A. Sampson, Kim Bottomly, Robert K. Prud’homme
{"title":"用于免疫调节的高负载蛋白质纳米颗粒的规模化生产","authors":"Michael J. Caplan, Richard Baldwin, Xiangyun Yin, Alexander Grishin, Stephanie Eisenbarth, Hugh A. Sampson, Kim Bottomly, Robert K. Prud’homme","doi":"10.1038/s43246-024-00626-w","DOIUrl":null,"url":null,"abstract":"Immune modulation and desensitization is a growing field of research and clinical investigation that requires precise delivery of antigens to immune system cells. Nanoparticles (NPs) have emerged as excellent candidates for antigen delivery, particularly in immune desensitization applications. NP-encapsulated protein antigens enable the delivery of protein and co-encapsulated adjuvant to antigen-presenting cells without systemic exposure and allergic response. Here, we show a method for producing poly(lactide-co-glycolide) (PLG) NPs in an efficient, high-yield, and large-scale inhomogeneous precipitation process. The process enables the production of compositionally complex PLG NPs containing protein while also incorporating DNA and E. coli phospholipids as integral adjuvants in the NP vehicle. Orally delivered PLG NPs activate the murine immune system, and encapsulated peanut allergen protein elicits approximately 10-fold lower levels of basophil activation than does unencapsulated protein in basophils isolated from peanut-allergic patients. This efficacy and safety evidence makes these PLG NPs excellent candidates for clinical applications. Protein-loaded nanoparticles are important for immunomodulatory applications. Here, an efficient method for producing protein-containing nanoparticles at large scale is developed which overcomes prior limitations on the use of poly(lactide-co-glycolide) nanoparticles.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00626-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Scaleable production of highly loaded protein nanoparticles for immune modulation\",\"authors\":\"Michael J. Caplan, Richard Baldwin, Xiangyun Yin, Alexander Grishin, Stephanie Eisenbarth, Hugh A. Sampson, Kim Bottomly, Robert K. Prud’homme\",\"doi\":\"10.1038/s43246-024-00626-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immune modulation and desensitization is a growing field of research and clinical investigation that requires precise delivery of antigens to immune system cells. Nanoparticles (NPs) have emerged as excellent candidates for antigen delivery, particularly in immune desensitization applications. NP-encapsulated protein antigens enable the delivery of protein and co-encapsulated adjuvant to antigen-presenting cells without systemic exposure and allergic response. Here, we show a method for producing poly(lactide-co-glycolide) (PLG) NPs in an efficient, high-yield, and large-scale inhomogeneous precipitation process. The process enables the production of compositionally complex PLG NPs containing protein while also incorporating DNA and E. coli phospholipids as integral adjuvants in the NP vehicle. Orally delivered PLG NPs activate the murine immune system, and encapsulated peanut allergen protein elicits approximately 10-fold lower levels of basophil activation than does unencapsulated protein in basophils isolated from peanut-allergic patients. This efficacy and safety evidence makes these PLG NPs excellent candidates for clinical applications. Protein-loaded nanoparticles are important for immunomodulatory applications. Here, an efficient method for producing protein-containing nanoparticles at large scale is developed which overcomes prior limitations on the use of poly(lactide-co-glycolide) nanoparticles.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00626-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00626-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00626-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Scaleable production of highly loaded protein nanoparticles for immune modulation
Immune modulation and desensitization is a growing field of research and clinical investigation that requires precise delivery of antigens to immune system cells. Nanoparticles (NPs) have emerged as excellent candidates for antigen delivery, particularly in immune desensitization applications. NP-encapsulated protein antigens enable the delivery of protein and co-encapsulated adjuvant to antigen-presenting cells without systemic exposure and allergic response. Here, we show a method for producing poly(lactide-co-glycolide) (PLG) NPs in an efficient, high-yield, and large-scale inhomogeneous precipitation process. The process enables the production of compositionally complex PLG NPs containing protein while also incorporating DNA and E. coli phospholipids as integral adjuvants in the NP vehicle. Orally delivered PLG NPs activate the murine immune system, and encapsulated peanut allergen protein elicits approximately 10-fold lower levels of basophil activation than does unencapsulated protein in basophils isolated from peanut-allergic patients. This efficacy and safety evidence makes these PLG NPs excellent candidates for clinical applications. Protein-loaded nanoparticles are important for immunomodulatory applications. Here, an efficient method for producing protein-containing nanoparticles at large scale is developed which overcomes prior limitations on the use of poly(lactide-co-glycolide) nanoparticles.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.