Karine Couturier, Nathalie Giacometti, Pierre Hanoux, Sakina Yahiaoui, Thomas David, Thanh-Loan Lai, Théo Dejob, Jolan Bestautte, Mathilde Bouvier, Fabien Rouillard
{"title":"用于 SOC 应用的涂层 AISI441 的抗氧化性和铬保持率得到改善","authors":"Karine Couturier, Nathalie Giacometti, Pierre Hanoux, Sakina Yahiaoui, Thomas David, Thanh-Loan Lai, Théo Dejob, Jolan Bestautte, Mathilde Bouvier, Fabien Rouillard","doi":"10.1007/s11085-024-10301-7","DOIUrl":null,"url":null,"abstract":"<div><p>Durability is still a critical factor that limits solid oxide cell (SOC) technology industrialization. In order to maintain a good level of performance for the overall targeted lifetime of about 40 kh, the oxidation of the interconnects made of ferritic stainless steel and Cr volatilization from this material to the cell electrodes have to be restricted. CeCo-based coatings were applied by PVD HiPIMS on AISI441 alloy. Their ability to reduce the thickness of the poorly conductive formed oxide and improve Cr retention was studied at sample scale by measurements of weight gain and Cr content by ICP-OES after 5000 h of exposure in ambient air at 700 and 800 °C. In the testing conditions, post-test characterization by SEM/EDX showed that oxide scale thickness was reduced when coatings were applied compared to bare AISI441 steel. Moreover, the strong oxide scale spallation observed at 800 °C with bare AISI441 steel was avoided. Cr volatilization was also strongly decreased. Post-test SEM/EDX and ToF–SIMS characterization of a short stack integrating coatings on the air side in some repeat units (RU) confirmed the limited Cr diffusion in the strontium doped lanthanum manganite (LSM) contact layer when the coating is present after 5200 h of solid oxide electrolysis cell operation (SOEC).</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 6","pages":"1421 - 1435"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Oxidation Resistance and Cr Retention of Coated AISI441 for SOC Application\",\"authors\":\"Karine Couturier, Nathalie Giacometti, Pierre Hanoux, Sakina Yahiaoui, Thomas David, Thanh-Loan Lai, Théo Dejob, Jolan Bestautte, Mathilde Bouvier, Fabien Rouillard\",\"doi\":\"10.1007/s11085-024-10301-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Durability is still a critical factor that limits solid oxide cell (SOC) technology industrialization. In order to maintain a good level of performance for the overall targeted lifetime of about 40 kh, the oxidation of the interconnects made of ferritic stainless steel and Cr volatilization from this material to the cell electrodes have to be restricted. CeCo-based coatings were applied by PVD HiPIMS on AISI441 alloy. Their ability to reduce the thickness of the poorly conductive formed oxide and improve Cr retention was studied at sample scale by measurements of weight gain and Cr content by ICP-OES after 5000 h of exposure in ambient air at 700 and 800 °C. In the testing conditions, post-test characterization by SEM/EDX showed that oxide scale thickness was reduced when coatings were applied compared to bare AISI441 steel. Moreover, the strong oxide scale spallation observed at 800 °C with bare AISI441 steel was avoided. Cr volatilization was also strongly decreased. Post-test SEM/EDX and ToF–SIMS characterization of a short stack integrating coatings on the air side in some repeat units (RU) confirmed the limited Cr diffusion in the strontium doped lanthanum manganite (LSM) contact layer when the coating is present after 5200 h of solid oxide electrolysis cell operation (SOEC).</p></div>\",\"PeriodicalId\":724,\"journal\":{\"name\":\"Oxidation of Metals\",\"volume\":\"101 6\",\"pages\":\"1421 - 1435\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxidation of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11085-024-10301-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10301-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Improved Oxidation Resistance and Cr Retention of Coated AISI441 for SOC Application
Durability is still a critical factor that limits solid oxide cell (SOC) technology industrialization. In order to maintain a good level of performance for the overall targeted lifetime of about 40 kh, the oxidation of the interconnects made of ferritic stainless steel and Cr volatilization from this material to the cell electrodes have to be restricted. CeCo-based coatings were applied by PVD HiPIMS on AISI441 alloy. Their ability to reduce the thickness of the poorly conductive formed oxide and improve Cr retention was studied at sample scale by measurements of weight gain and Cr content by ICP-OES after 5000 h of exposure in ambient air at 700 and 800 °C. In the testing conditions, post-test characterization by SEM/EDX showed that oxide scale thickness was reduced when coatings were applied compared to bare AISI441 steel. Moreover, the strong oxide scale spallation observed at 800 °C with bare AISI441 steel was avoided. Cr volatilization was also strongly decreased. Post-test SEM/EDX and ToF–SIMS characterization of a short stack integrating coatings on the air side in some repeat units (RU) confirmed the limited Cr diffusion in the strontium doped lanthanum manganite (LSM) contact layer when the coating is present after 5200 h of solid oxide electrolysis cell operation (SOEC).
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.