癌症药物信息学:数据库和分析工具

IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY
Pradnya Kamble, Prinsa R. Nagar, Kaushikkumar A. Bhakhar, Prabha Garg, M. Elizabeth Sobhia, Srivatsava Naidu, Prasad V. Bharatam
{"title":"癌症药物信息学:数据库和分析工具","authors":"Pradnya Kamble,&nbsp;Prinsa R. Nagar,&nbsp;Kaushikkumar A. Bhakhar,&nbsp;Prabha Garg,&nbsp;M. Elizabeth Sobhia,&nbsp;Srivatsava Naidu,&nbsp;Prasad V. Bharatam","doi":"10.1007/s10142-024-01445-5","DOIUrl":null,"url":null,"abstract":"<div><p>Cancer is a subject of extensive investigation, and the utilization of omics technology has resulted in the generation of substantial volumes of big data in cancer research. Numerous databases are being developed to manage and organize this data effectively. These databases encompass various domains such as genomics, transcriptomics, proteomics, metabolomics, immunology, and drug discovery. The application of computational tools into various core components of pharmaceutical sciences constitutes \"Pharmacoinformatics\", an emerging paradigm in rational drug discovery. The three major features of pharmacoinformatics include (i) Structure modelling of putative drugs and targets, (ii) Compilation of databases and analysis using statistical approaches, and (iii) Employing artificial intelligence/machine learning algorithms for the discovery of novel therapeutic molecules. The development, updating, and analysis of databases using statistical approaches play a pivotal role in pharmacoinformatics. Multiple software tools are associated with oncoinformatics research. This review catalogs the databases and computational tools related to cancer drug discovery and highlights their potential implications in the pharmacoinformatics of cancer.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"24 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancer pharmacoinformatics: Databases and analytical tools\",\"authors\":\"Pradnya Kamble,&nbsp;Prinsa R. Nagar,&nbsp;Kaushikkumar A. Bhakhar,&nbsp;Prabha Garg,&nbsp;M. Elizabeth Sobhia,&nbsp;Srivatsava Naidu,&nbsp;Prasad V. Bharatam\",\"doi\":\"10.1007/s10142-024-01445-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cancer is a subject of extensive investigation, and the utilization of omics technology has resulted in the generation of substantial volumes of big data in cancer research. Numerous databases are being developed to manage and organize this data effectively. These databases encompass various domains such as genomics, transcriptomics, proteomics, metabolomics, immunology, and drug discovery. The application of computational tools into various core components of pharmaceutical sciences constitutes \\\"Pharmacoinformatics\\\", an emerging paradigm in rational drug discovery. The three major features of pharmacoinformatics include (i) Structure modelling of putative drugs and targets, (ii) Compilation of databases and analysis using statistical approaches, and (iii) Employing artificial intelligence/machine learning algorithms for the discovery of novel therapeutic molecules. The development, updating, and analysis of databases using statistical approaches play a pivotal role in pharmacoinformatics. Multiple software tools are associated with oncoinformatics research. This review catalogs the databases and computational tools related to cancer drug discovery and highlights their potential implications in the pharmacoinformatics of cancer.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":574,\"journal\":{\"name\":\"Functional & Integrative Genomics\",\"volume\":\"24 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional & Integrative Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10142-024-01445-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-024-01445-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

癌症是一个广泛的研究课题,而 omics 技术的使用已在癌症研究中产生了大量的大数据。为了有效管理和组织这些数据,人们正在开发大量数据库。这些数据库涵盖基因组学、转录组学、蛋白质组学、代谢组学、免疫学和药物发现等多个领域。将计算工具应用于制药科学的各个核心组成部分,就构成了 "药物信息学",这是合理药物发现的一个新兴范例。药物信息学的三个主要特点包括:(i) 建立假定药物和靶点的结构模型;(ii) 利用统计方法汇编数据库并进行分析;(iii) 利用人工智能/机器学习算法发现新型治疗分子。使用统计方法开发、更新和分析数据库在药物信息学中发挥着关键作用。有多种软件工具与药物信息学研究相关。本综述对与癌症药物发现相关的数据库和计算工具进行了分类,并重点介绍了它们在癌症药物信息学中的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cancer pharmacoinformatics: Databases and analytical tools

Cancer pharmacoinformatics: Databases and analytical tools

Cancer pharmacoinformatics: Databases and analytical tools

Cancer is a subject of extensive investigation, and the utilization of omics technology has resulted in the generation of substantial volumes of big data in cancer research. Numerous databases are being developed to manage and organize this data effectively. These databases encompass various domains such as genomics, transcriptomics, proteomics, metabolomics, immunology, and drug discovery. The application of computational tools into various core components of pharmaceutical sciences constitutes "Pharmacoinformatics", an emerging paradigm in rational drug discovery. The three major features of pharmacoinformatics include (i) Structure modelling of putative drugs and targets, (ii) Compilation of databases and analysis using statistical approaches, and (iii) Employing artificial intelligence/machine learning algorithms for the discovery of novel therapeutic molecules. The development, updating, and analysis of databases using statistical approaches play a pivotal role in pharmacoinformatics. Multiple software tools are associated with oncoinformatics research. This review catalogs the databases and computational tools related to cancer drug discovery and highlights their potential implications in the pharmacoinformatics of cancer.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
3.40%
发文量
92
审稿时长
2 months
期刊介绍: Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信