Hongli Zhou, Liang Yao, Yongkang Feng, Zhengfeng Huang, Yingchun Lu
{"title":"基于单节点布尔混沌结构的轻量级高吞吐量 TRNG","authors":"Hongli Zhou, Liang Yao, Yongkang Feng, Zhengfeng Huang, Yingchun Lu","doi":"10.1002/cta.4265","DOIUrl":null,"url":null,"abstract":"With the rise of the Internet and electronic devices, the security of network information is gaining attention, and the true random number generator (TRNG) is playing an increasingly crucial role in information security. TRNG, based on Boolean chaotic entropy source, has drawn significant interest due to its uncomplicated circuit design and minimal hardware resource usage. However, most existing structures consist of two‐input or three‐input logic devices, forming a complex multinode, geometrically symmetric Boolean chaotic network using multiple logic devices. This network configuration results in increased complexity and reduced throughput. This study introduces an entropy source based on Boolean chaos utilizing single‐node and four‐input XOR gates, which can be easily placed and routed on Xilinx Artix‐7 FPGA. It requires only 29 LUTs and 5 DFFs without any postprocessing, achieving a throughput of up to 700 Mb/s. The output of TRNG has successfully passed various tests including the autocorrelation test, NIST SP800‐22, NIST SP800‐90B, AIS‐31, and TESTU01 tests with favorable results. Furthermore, by applying a three‐stage XOR chain postprocessing on Xilinx Spartan‐6 FPGA and Xilinx Virtex‐6 FPGA, it has passed the NIST SP800‐22 and NIST SP800‐90B tests at 300 Mb/s. The structure was also tested using Xilinx Virtex‐6 FPGA under different temperature and voltage conditions, passing the NIST SP800‐90B IID test.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight High‐Throughput TRNG Based on Single‐Node Boolean Chaotic Structure\",\"authors\":\"Hongli Zhou, Liang Yao, Yongkang Feng, Zhengfeng Huang, Yingchun Lu\",\"doi\":\"10.1002/cta.4265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rise of the Internet and electronic devices, the security of network information is gaining attention, and the true random number generator (TRNG) is playing an increasingly crucial role in information security. TRNG, based on Boolean chaotic entropy source, has drawn significant interest due to its uncomplicated circuit design and minimal hardware resource usage. However, most existing structures consist of two‐input or three‐input logic devices, forming a complex multinode, geometrically symmetric Boolean chaotic network using multiple logic devices. This network configuration results in increased complexity and reduced throughput. This study introduces an entropy source based on Boolean chaos utilizing single‐node and four‐input XOR gates, which can be easily placed and routed on Xilinx Artix‐7 FPGA. It requires only 29 LUTs and 5 DFFs without any postprocessing, achieving a throughput of up to 700 Mb/s. The output of TRNG has successfully passed various tests including the autocorrelation test, NIST SP800‐22, NIST SP800‐90B, AIS‐31, and TESTU01 tests with favorable results. Furthermore, by applying a three‐stage XOR chain postprocessing on Xilinx Spartan‐6 FPGA and Xilinx Virtex‐6 FPGA, it has passed the NIST SP800‐22 and NIST SP800‐90B tests at 300 Mb/s. The structure was also tested using Xilinx Virtex‐6 FPGA under different temperature and voltage conditions, passing the NIST SP800‐90B IID test.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4265\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4265","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Lightweight High‐Throughput TRNG Based on Single‐Node Boolean Chaotic Structure
With the rise of the Internet and electronic devices, the security of network information is gaining attention, and the true random number generator (TRNG) is playing an increasingly crucial role in information security. TRNG, based on Boolean chaotic entropy source, has drawn significant interest due to its uncomplicated circuit design and minimal hardware resource usage. However, most existing structures consist of two‐input or three‐input logic devices, forming a complex multinode, geometrically symmetric Boolean chaotic network using multiple logic devices. This network configuration results in increased complexity and reduced throughput. This study introduces an entropy source based on Boolean chaos utilizing single‐node and four‐input XOR gates, which can be easily placed and routed on Xilinx Artix‐7 FPGA. It requires only 29 LUTs and 5 DFFs without any postprocessing, achieving a throughput of up to 700 Mb/s. The output of TRNG has successfully passed various tests including the autocorrelation test, NIST SP800‐22, NIST SP800‐90B, AIS‐31, and TESTU01 tests with favorable results. Furthermore, by applying a three‐stage XOR chain postprocessing on Xilinx Spartan‐6 FPGA and Xilinx Virtex‐6 FPGA, it has passed the NIST SP800‐22 and NIST SP800‐90B tests at 300 Mb/s. The structure was also tested using Xilinx Virtex‐6 FPGA under different temperature and voltage conditions, passing the NIST SP800‐90B IID test.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.