基于单节点布尔混沌结构的轻量级高吞吐量 TRNG

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongli Zhou, Liang Yao, Yongkang Feng, Zhengfeng Huang, Yingchun Lu
{"title":"基于单节点布尔混沌结构的轻量级高吞吐量 TRNG","authors":"Hongli Zhou, Liang Yao, Yongkang Feng, Zhengfeng Huang, Yingchun Lu","doi":"10.1002/cta.4265","DOIUrl":null,"url":null,"abstract":"With the rise of the Internet and electronic devices, the security of network information is gaining attention, and the true random number generator (TRNG) is playing an increasingly crucial role in information security. TRNG, based on Boolean chaotic entropy source, has drawn significant interest due to its uncomplicated circuit design and minimal hardware resource usage. However, most existing structures consist of two‐input or three‐input logic devices, forming a complex multinode, geometrically symmetric Boolean chaotic network using multiple logic devices. This network configuration results in increased complexity and reduced throughput. This study introduces an entropy source based on Boolean chaos utilizing single‐node and four‐input XOR gates, which can be easily placed and routed on Xilinx Artix‐7 FPGA. It requires only 29 LUTs and 5 DFFs without any postprocessing, achieving a throughput of up to 700 Mb/s. The output of TRNG has successfully passed various tests including the autocorrelation test, NIST SP800‐22, NIST SP800‐90B, AIS‐31, and TESTU01 tests with favorable results. Furthermore, by applying a three‐stage XOR chain postprocessing on Xilinx Spartan‐6 FPGA and Xilinx Virtex‐6 FPGA, it has passed the NIST SP800‐22 and NIST SP800‐90B tests at 300 Mb/s. The structure was also tested using Xilinx Virtex‐6 FPGA under different temperature and voltage conditions, passing the NIST SP800‐90B IID test.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight High‐Throughput TRNG Based on Single‐Node Boolean Chaotic Structure\",\"authors\":\"Hongli Zhou, Liang Yao, Yongkang Feng, Zhengfeng Huang, Yingchun Lu\",\"doi\":\"10.1002/cta.4265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rise of the Internet and electronic devices, the security of network information is gaining attention, and the true random number generator (TRNG) is playing an increasingly crucial role in information security. TRNG, based on Boolean chaotic entropy source, has drawn significant interest due to its uncomplicated circuit design and minimal hardware resource usage. However, most existing structures consist of two‐input or three‐input logic devices, forming a complex multinode, geometrically symmetric Boolean chaotic network using multiple logic devices. This network configuration results in increased complexity and reduced throughput. This study introduces an entropy source based on Boolean chaos utilizing single‐node and four‐input XOR gates, which can be easily placed and routed on Xilinx Artix‐7 FPGA. It requires only 29 LUTs and 5 DFFs without any postprocessing, achieving a throughput of up to 700 Mb/s. The output of TRNG has successfully passed various tests including the autocorrelation test, NIST SP800‐22, NIST SP800‐90B, AIS‐31, and TESTU01 tests with favorable results. Furthermore, by applying a three‐stage XOR chain postprocessing on Xilinx Spartan‐6 FPGA and Xilinx Virtex‐6 FPGA, it has passed the NIST SP800‐22 and NIST SP800‐90B tests at 300 Mb/s. The structure was also tested using Xilinx Virtex‐6 FPGA under different temperature and voltage conditions, passing the NIST SP800‐90B IID test.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4265\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4265","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着互联网和电子设备的兴起,网络信息的安全性日益受到关注,而真随机数发生器(TRNG)在信息安全中发挥着越来越关键的作用。基于布尔混沌熵源的 TRNG 因其电路设计简单、硬件资源占用少而备受关注。然而,现有的大多数结构都由两输入或三输入逻辑器件组成,利用多个逻辑器件形成一个复杂的多节点、几何对称的布尔混沌网络。这种网络配置增加了复杂性,降低了吞吐量。本研究介绍了一种基于布尔混沌的熵源,它利用单节点和四输入 XOR 门,可在 Xilinx Artix-7 FPGA 上轻松放置和布线。它只需要 29 个 LUT 和 5 个 DFF,无需任何后处理,吞吐量可达 700 Mb/s。TRNG 的输出已成功通过各种测试,包括自相关测试、NIST SP800-22、NIST SP800-90B、AIS-31 和 TESTU01 测试,并取得了良好的结果。此外,通过在 Xilinx Spartan-6 FPGA 和 Xilinx Virtex-6 FPGA 上应用三级 XOR 链后处理,它以 300 Mb/s 的速度通过了 NIST SP800-22 和 NIST SP800-90B 测试。该结构还在不同温度和电压条件下使用 Xilinx Virtex-6 FPGA 进行了测试,并通过了 NIST SP800-90B IID 测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight High‐Throughput TRNG Based on Single‐Node Boolean Chaotic Structure
With the rise of the Internet and electronic devices, the security of network information is gaining attention, and the true random number generator (TRNG) is playing an increasingly crucial role in information security. TRNG, based on Boolean chaotic entropy source, has drawn significant interest due to its uncomplicated circuit design and minimal hardware resource usage. However, most existing structures consist of two‐input or three‐input logic devices, forming a complex multinode, geometrically symmetric Boolean chaotic network using multiple logic devices. This network configuration results in increased complexity and reduced throughput. This study introduces an entropy source based on Boolean chaos utilizing single‐node and four‐input XOR gates, which can be easily placed and routed on Xilinx Artix‐7 FPGA. It requires only 29 LUTs and 5 DFFs without any postprocessing, achieving a throughput of up to 700 Mb/s. The output of TRNG has successfully passed various tests including the autocorrelation test, NIST SP800‐22, NIST SP800‐90B, AIS‐31, and TESTU01 tests with favorable results. Furthermore, by applying a three‐stage XOR chain postprocessing on Xilinx Spartan‐6 FPGA and Xilinx Virtex‐6 FPGA, it has passed the NIST SP800‐22 and NIST SP800‐90B tests at 300 Mb/s. The structure was also tested using Xilinx Virtex‐6 FPGA under different temperature and voltage conditions, passing the NIST SP800‐90B IID test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Circuit Theory and Applications
International Journal of Circuit Theory and Applications 工程技术-工程:电子与电气
CiteScore
3.60
自引率
34.80%
发文量
277
审稿时长
4.5 months
期刊介绍: The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信