Thomas E. Shoopman, Andrew T. Morehead, Jr., Andrew L. Sargent
{"title":"钴催化的二烯烃加氢反应中的替代几何结构促进了高自旋机制:密度泛函理论研究","authors":"Thomas E. Shoopman, Andrew T. Morehead, Jr., Andrew L. Sargent","doi":"10.1021/acs.organomet.4c00215","DOIUrl":null,"url":null,"abstract":"In contrast to the more common rhodium-catalyzed hydroacylation reaction, which is widely accepted to proceed via a low-spin singlet mechanism that passes through the familiar steps of oxidative addition → alkene insertion → reductive elimination, the cobalt-catalyzed hydroacylation reaction of dienes reported by Dong et al. ( <cite><i>J. Am. Chem. Soc.</i></cite>, <span>2014</span>) has been calculated to proceed via a high-spin triplet mechanism. The initial minimum energy pathway evaluated was the singlet, as two prior studies had also examined that pathway. The use of nudged elastic band methods enabled location of additional intermediates relative to the previous studies but also revealed that the isomeric product distribution was not accurately reproduced and that at least one intermediate appeared to prefer a different geometry. Subsequent examination of the triplet minimum energy pathway showed the intermediates are accompanied by geometries not typically associated with the singlet mechanism, which facilitates a very different pathway that involves oxidative cyclization and a direct reductive hydrogen atom transfer, thus avoiding the metal-hydride intermediates and reductive elimination steps that characterize the singlet pathway entirely.","PeriodicalId":56,"journal":{"name":"Organometallics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternate Geometries in the Cobalt-Catalyzed Hydroacylation of Dienes Facilitate a High Spin Mechanism: A Density Functional Theory Study\",\"authors\":\"Thomas E. Shoopman, Andrew T. Morehead, Jr., Andrew L. Sargent\",\"doi\":\"10.1021/acs.organomet.4c00215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In contrast to the more common rhodium-catalyzed hydroacylation reaction, which is widely accepted to proceed via a low-spin singlet mechanism that passes through the familiar steps of oxidative addition → alkene insertion → reductive elimination, the cobalt-catalyzed hydroacylation reaction of dienes reported by Dong et al. ( <cite><i>J. Am. Chem. Soc.</i></cite>, <span>2014</span>) has been calculated to proceed via a high-spin triplet mechanism. The initial minimum energy pathway evaluated was the singlet, as two prior studies had also examined that pathway. The use of nudged elastic band methods enabled location of additional intermediates relative to the previous studies but also revealed that the isomeric product distribution was not accurately reproduced and that at least one intermediate appeared to prefer a different geometry. Subsequent examination of the triplet minimum energy pathway showed the intermediates are accompanied by geometries not typically associated with the singlet mechanism, which facilitates a very different pathway that involves oxidative cyclization and a direct reductive hydrogen atom transfer, thus avoiding the metal-hydride intermediates and reductive elimination steps that characterize the singlet pathway entirely.\",\"PeriodicalId\":56,\"journal\":{\"name\":\"Organometallics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organometallics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.organomet.4c00215\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organometallics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.organomet.4c00215","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Alternate Geometries in the Cobalt-Catalyzed Hydroacylation of Dienes Facilitate a High Spin Mechanism: A Density Functional Theory Study
In contrast to the more common rhodium-catalyzed hydroacylation reaction, which is widely accepted to proceed via a low-spin singlet mechanism that passes through the familiar steps of oxidative addition → alkene insertion → reductive elimination, the cobalt-catalyzed hydroacylation reaction of dienes reported by Dong et al. ( J. Am. Chem. Soc., 2014) has been calculated to proceed via a high-spin triplet mechanism. The initial minimum energy pathway evaluated was the singlet, as two prior studies had also examined that pathway. The use of nudged elastic band methods enabled location of additional intermediates relative to the previous studies but also revealed that the isomeric product distribution was not accurately reproduced and that at least one intermediate appeared to prefer a different geometry. Subsequent examination of the triplet minimum energy pathway showed the intermediates are accompanied by geometries not typically associated with the singlet mechanism, which facilitates a very different pathway that involves oxidative cyclization and a direct reductive hydrogen atom transfer, thus avoiding the metal-hydride intermediates and reductive elimination steps that characterize the singlet pathway entirely.
期刊介绍:
Organometallics is the flagship journal of organometallic chemistry and records progress in one of the most active fields of science, bridging organic and inorganic chemistry. The journal publishes Articles, Communications, Reviews, and Tutorials (instructional overviews) that depict research on the synthesis, structure, bonding, chemical reactivity, and reaction mechanisms for a variety of applications, including catalyst design and catalytic processes; main-group, transition-metal, and lanthanide and actinide metal chemistry; synthetic aspects of polymer science and materials science; and bioorganometallic chemistry.