{"title":"MTFDN:基于多任务学习的图像复制移动伪造检测方法","authors":"Peng Liang, Hang Tu, Amir Hussain, Ziyuan Li","doi":"10.1111/exsy.13729","DOIUrl":null,"url":null,"abstract":"Image copy‐move forgery, where an image region is copied and pasted within the same image, is a simple yet widely employed manipulation. In this paper, we rethink copy‐move forgery detection from the perspective of multi‐task learning and summarize two characteristics of this problem: (1) Homology and (2) Manipulated traces. Consequently, we propose a multi‐task forgery detection network (MTFDN) for image copy‐move forgery localization and source/target distinguishment. The network consists of a hard‐parameter sharing feature extractor, global forged homology detection (GFHD) and local manipulated trace detection (LMTD) modules. The difference of feature distribution between the GFHD module and the LMTD module is significantly reduced by sharing parameters. Experimental results on several benchmark copy‐move forgery datasets demonstrate the effectiveness of our proposed MTFDN.","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"4 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MTFDN: An image copy‐move forgery detection method based on multi‐task learning\",\"authors\":\"Peng Liang, Hang Tu, Amir Hussain, Ziyuan Li\",\"doi\":\"10.1111/exsy.13729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image copy‐move forgery, where an image region is copied and pasted within the same image, is a simple yet widely employed manipulation. In this paper, we rethink copy‐move forgery detection from the perspective of multi‐task learning and summarize two characteristics of this problem: (1) Homology and (2) Manipulated traces. Consequently, we propose a multi‐task forgery detection network (MTFDN) for image copy‐move forgery localization and source/target distinguishment. The network consists of a hard‐parameter sharing feature extractor, global forged homology detection (GFHD) and local manipulated trace detection (LMTD) modules. The difference of feature distribution between the GFHD module and the LMTD module is significantly reduced by sharing parameters. Experimental results on several benchmark copy‐move forgery datasets demonstrate the effectiveness of our proposed MTFDN.\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1111/exsy.13729\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1111/exsy.13729","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
MTFDN: An image copy‐move forgery detection method based on multi‐task learning
Image copy‐move forgery, where an image region is copied and pasted within the same image, is a simple yet widely employed manipulation. In this paper, we rethink copy‐move forgery detection from the perspective of multi‐task learning and summarize two characteristics of this problem: (1) Homology and (2) Manipulated traces. Consequently, we propose a multi‐task forgery detection network (MTFDN) for image copy‐move forgery localization and source/target distinguishment. The network consists of a hard‐parameter sharing feature extractor, global forged homology detection (GFHD) and local manipulated trace detection (LMTD) modules. The difference of feature distribution between the GFHD module and the LMTD module is significantly reduced by sharing parameters. Experimental results on several benchmark copy‐move forgery datasets demonstrate the effectiveness of our proposed MTFDN.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.